• 제목/요약/키워드: Active X

검색결과 1,432건 처리시간 0.029초

RCMAC를 이용한 능동소음 제어시스템의 소음저감 성능개선 (Improvement Noise Attenuation Performance of the Active Noise Control System Using RCMAC)

  • 한성익;여대연;김새한;이권순
    • 동력기계공학회지
    • /
    • 제14권5호
    • /
    • pp.56-62
    • /
    • 2010
  • In this paper, a recurrent cerebellar modulation articulation control (RCMAC) has been developed for improvement of noise attenuation performance in active noise control system. For the narrow band noise, a filter-x least mean square (FXLMS) method has bee frequently employed as an algorithm for active noise control (ANC) and has a partial satisfactory noise attenuation performance. However, noise attenuation performance of an ANC system with FXLMS method is poor for broad band noise and nonlinear path since it has linear filtering structure. Thus, an ANC system using RCMAC is proposed to improve this problem. Some simulations in duct system using harmonic motor noise and KTX cabin noise as a noise source were executed. It is shown that satisfactory noise attenuation performance can be obtained.

베이스 가진을 받는 능동자기베어링 시스템에서 Filtered-x LMS 알고리듬을 이용한 가속도 앞먹임 제어 (Acceleration Feedforward Control in Active Magnetic Bearing System Subject to Base Motion by Filtered-x LMS Algorithm)

  • 강민식
    • 대한기계학회논문집A
    • /
    • 제27권10호
    • /
    • pp.1712-1719
    • /
    • 2003
  • This paper concerns on application of active magnetic bearing(AMB) system to levitate the elevation axis of an electro-optical sight mounted on moving vehicles. In such a system, it is desirable to retain the elevation axis within the predetermined air-gap while the vehicle is moving. An optimal base acceleration feedforward control is proposed to reduce the base motion response. In the consideration of the uncertainty of the system model, a filtered-x least-mean-square(FXLMS) algorithm is used to estimate the frequency response function of the feedforward control which cancels base motions. The frequency response function is fitted to an optimal feedforward control. Experimental results demonstrate that the proposed control reduces the air-gap deviation to 27.7% that by feedback control alone.

제한 Filtered-x LMS 알고리즘을 이용한 능동 소음제어 (Active Noise Control using Constrained Filtered-x LMS Algorithm)

  • 나희승;박영진
    • 소음진동
    • /
    • 제8권3호
    • /
    • pp.485-493
    • /
    • 1998
  • Many of the adaptive noise control systems utilize a form of the least mean square (LMS) algorithms. In the active control of noise, it is common practice to locate an error microphone far from the control source to avoid the near-field effects by evanescent waves. Such a distance between the control source and the error microphone makes a certain level of time-delay inevitable and, hence, may yield undesirable effects on the convergence properties of control algorithms such as filtered-x LMS. This paper discusses the dependence of the convergence rate on the acoustic error path in these popularalgorithms and introduces new algorithms which increase the convergence region regardless of the time-delay in the acoustic error path. Performances of the new LMS algorithms are presented in comparison with those by the conventional algorithms based on computer simulations and experiments.

  • PDF

CONVERGENCE ANALYSIS OF THE FILTERED-X LMS ACTIVE NOISE CANCELLER FOR A SINUSOIDAL INPUT

  • Kang Seung Lee
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1994년도 FIFTH WESTERN PACIFIC REGIONAL ACOUSTICS CONFERENCE SEOUL KOREA
    • /
    • pp.873-878
    • /
    • 1994
  • Application of the filtered-x LMS adaptive filter to active noise cancellation requires to estimate the transfer characteristics between the output and the error signal of the adaptive canceller. We analyze the effects of estimation accuracy on the convergence behavior of the canceller when the input noise is modeled as a sinusoid.

  • PDF

X 대역 타일형 능동 송수신 모듈 설계 (A Design of X-Band Tile Type Active Transmit/Receive Module)

  • 하정현;문주영;이기원;남병창;윤상원
    • 한국전자파학회논문지
    • /
    • 제21권12호
    • /
    • pp.1467-1474
    • /
    • 2010
  • X 대역에서 능동 위상 배열 레이더에 적용할 수 있는 타일형 능동 송수신 모듈을 구현하였다. 제안한 타일형 구조의 구현을 위한 수직 연결은 fuzz button을 이용한 solderless 방식으로 삽입 손실은 0.6 dB, 반사 손실의 VSWR은 1.7 이하를 만족하며 X 대역에서 약 30 %의 대역폭을 가지는 광대역 특성을 가진다. 광대역 특성을 가지는 수직 연결 구조를 이용하면 수직 연결 시에 발생할 수 있는 부정합을 최소한으로 하여 우수한 이득 평탄도를 가지는 타일형 구조의 송수신 모듈을 구현할 수 있다.

FXLMS 알고리듬을 이용한 덕트의 능동소음제어 (Active Noise Control of Ducts Using the FXLMS Algorithms)

  • 류경완;홍진숙;정의봉
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.489-496
    • /
    • 2008
  • This paper investigates active noise control of ducts using Filtered-x Least Mean Square (FXLMS) algorithms to reduce noise transmission. Single channel FXLMS (MFXLSM) and multiple channel FXLMS (MFXLMS) algorithms are used to implement the active control systems. The transmission loss is significantly increased by SFXLMS but the sound pressure level (SPL) at the upstream of the error sensor is increased while that of downstream is very low. This increase of the upstream SPL causes the duct wall to vibrate and so to radiate noise. To prevent the wall vibration generated by the sound field upstream, global sound field control is required. To reduce SPL globally along the duct, active noise control using MFXLMS is implemented. We can then obtained globally reduced SPL. It is found experimentally that the vibration level, and so the radiated noise level. can be reduced by the active noise control using MFXLMS.

  • PDF

FXLMS 알고리듬을 이용한 덕트의 능동소음제어 (Active Noise Control of Ducts Using the FXLMS Algorithms)

  • 류경완;홍진숙;정의봉
    • 한국소음진동공학회논문집
    • /
    • 제19권1호
    • /
    • pp.24-34
    • /
    • 2009
  • This paper investigates active noise control of ducts using filtered-x least mean square(FXLMS) algorithms to reduce noise transmission. Single channel FXLMS(SFXLSM) and multiple channel FXLMS(MFXLMS) algorithms are used to implement the active control systems. The transmission loss is significantly increased by SFXLMS but the sound pressure level(SPL) at the upstream of the error sensor is increased while that of downstream is very low. This increase of the upstream SPL causes the duct wall to vibrate and so to radiate noise. To prevent the wall vibration generated by the sound field upstream, global sound field control is required. To reduce SPL globally along the duct, active noise control using MFXLMS is implemented. We can then be obtained globally reduced SPL. It is found experimentally that the vibration level, and so the radiated noise level, can be reduced by the active noise control using MFXLMS.

Optimization of Cancellation Path Model in Filtered-X LMS for Narrow Band Noise Suppression

  • Kim, Hyoun-Suk;Park, Youngjin
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제1권1호
    • /
    • pp.69-74
    • /
    • 1999
  • Adaptive algorithms based on gradient adaptation have been extensively investigated and successfully joined with active noise/vibration control applications. The Filtered-X LMS algorithm became one of the basic feedforward algorithms in such applications, but is not fully understood yet. Effects of cancellation path model on the Filtered-X LMS algorithm have investigated and some useful properties related to stability were discovered. Most of the results stated that the error in the cancellation path model is undesirable to the Filtered X LMS. However, we started convergence analysis of Filtered-X LMS based on the assumption that erroneous model does not always degrade its performance. In this paper, we present a way of optimizing the cancellation path modern in order to enhance the convergence speed by introducing intentional phase error. Carefully designed intentional phase error enhances the convergence speed of the Filtered X LMS algorithm for pure tone noise suppression application without any performance loss at steady state.

  • PDF

A Hybrid Control Development to Suppress the Noise in the Rectangular Enclosure using an Active/Passive Smart Foam Actuator

  • Kim Yeung-Shik;Kim Gi-Man;Roh Cheal-Ha;Fuller C. R.
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권4호
    • /
    • pp.37-43
    • /
    • 2005
  • This paper presents a hybrid control algorithm for the active noise control in the rectangular enclosure using an active/passive foam actuator. The hybrid control composes of the adaptive feedforward with feedback loop in which the adaptive feedforward control uses the well-known filtered-x LMS(least mean square) algorithm and the feedback loop consists of the sliding mode controller and observer. The hybrid control has its robustness for both transient and persistent external disturbances and increases the convergence speed due to the reduced variance of the jiltered-x signal by adding the feedback loop. The sliding mode control (SMC) is used to incorporate insensitivity to parameter variations and rejection of disturbances and the observer is used to get the state information in the controller deign. An active/passive smart foam actuator is used to minimize noise actively using an embedded PVDF film driven by an electrical input and passively using an absorption-foam. The error path dynamics is experimentally identified in the form of the auto-regressive and moving-average using the frequency domain identification technique. Experimental results demonstrate the effectiveness of the hybrid control and the feasibility of the smart foam actuator.

Effects of Co-Expression of Liver X Receptor β-Ligand Binding Domain with its Partner, Retinoid X Receptor α-Ligand Binding Domain, on their Solubility and Biological Activity in Escherichia coli

  • Kang, Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권2호
    • /
    • pp.247-254
    • /
    • 2015
  • In this presentation, I describe the expression and purification of the recombinant liver X receptor β-ligand binding domain proteins in E. coli using a commercially available double cistronic vector, pACYCDuet-1, to express the receptor heterodimer in a single cell as the soluble form. I describe here the expression and characterization of a biologically active heterodimer composed of the liver X receptor β-ligand binding domain and retinoid X receptor α-ligand binding domain. Although many of these proteins were previously seen to be produced in E. coli as insoluble aggregates or "inclusion bodies", I show here that as a form of heterodimer they can be made in soluble forms that are biologically active. This suggests that co-expression of the liver X receptor β-ligand binding domain with its binding partner improves the solubility of the complex and probably assists in their correct folding, thereby functioning as a type of molecular chaperone.