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Optimization of Cancellation Path Model in Filtered—X
LMS for Narrow Band Noise Suppression

Hyoun-Suk Kim and Youngijin Park

Abstract : Adaptive algorithms based on gradient adaptation have been extensively investigated and
success(ully joined with active noise/vibration control applications. The Filtered-X LMS algorithm became one of
the basic feedforward algorithms in such applications, bul is not fully understood vet. Effects of cancellation path
model on the Fillered-X LMS algorithm have investigated and some useful properties related o stability were
discovered. Most of the results stated that the error in the canccllation path model is undesirable to the
Filtered X LMS. However, we started convergence analysis of Filtered-X LMS based on the assumption that
erroneous model does not always degrade its performance. In this paper, we present a way of optimizing the
cancellation path model in order to enhance the convergence speed by introducing intentional phase error.
Carcfully designed intentional phase error enhances the convergence speed of the Filtered-X LMS algorithm for

pure tone neoise suppression application without any performance loss at steady state.

Keywords : filtered-X LMS, active noise control, narrow band noise, eigenvalue spread

I. Introduction

Adaptive filters updated by the gradients of their
cost function arc widely used In active noise and
vibration control applications. Among them, the Fil
tered-X LMS algorithm [1]-[3] that can cope with the
systems having cancellation path - an auxiliary path
between control speaker input and error microphome
outpul - has been the most popular algorithm for its
low computational burden and easy programming.

In ANC (Active Noise Control) system a reference
signal measured [rom noise source is filtered through
an adaptive filter. Its oulput is control signal and is
fed to a secondary speaker. The weights of adaptive
filler are updated to the direction of minimizing the
instantaneous squared crror measurcd from an crror
microphone. The update process requires prefiltering of
the refcrence signal through the model of the
cancellation path to ensure the stability of the update
process. Allowable mode! error is confined only by the
phase errov between the actual cancellation path and
its model. The limit of phase crror is 90°(2]-[4].

If the degree of freedom of reference signal does not
exceed that of the adaptive filter, le. exact or
underdetermined case, the steady state weight values
are independent of the model error providing that the
phase error does not excced 90°[4]. In this case, we
have another design parameter - phase error of can
cellation path model - whose allowable range is =90
This is independent of steady state performance. An
example of the ‘cxact or underdetermined case’ is
narrow- band noise suppression application where two
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adaptive weights are sufficient to deal with a pure
tone reference signal. Here, we present a novel design
procedure thal primarily injects an intentional phase
error 1o the cancellation path model to achieve fast
convergence of the Filtered-X LMS algorithm.

II. Gradient description

The active control system using Filtered-X LMS
we are concerning about is in Fig. 1. We assume that
this sysiem is excited with pure tone single reference
input xr of @ frequency and its output vk Is intended
to cancel the primary noise at the error microphone
location. W represents the adaplive filter, P the plant
between the roference and the ervor microphone signal,
and H and C the cancellation path and its model,
respectively.

In Filtered-X LMS algorithm with only one fre-
quency component o in the reference, cost function Jx
is defined as instantaneous squared error as follows:

J =g

A

. =& (w)e (@) 1)

where ex(w) is Fourler transfomm of ervor signal ex at
the excitation frequency w, and superscript - represents
complex corjugate. Assuming slow change of weight

LME
algorithm

Controller

Tig. 1. Block diagram of ANC system.
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values, from diagram of Fig. 1 we can express ex @)
as

e(w)={P(jw)+ Hjo)W (jo)} x (o) @

where P(jw), Hiw) and Wi(w) are complex transfer
functions at frequency w of plant, cancellation path,
and adaptive filter, respectively and x(w) is Fourier
transform of reference signal xx. The exact formulation
in time domain needs very complicated mathematics,
so we assume slow change of weight values for
simplicity and represent the cror of (2) in the
frequency domain.

Complex weight valuc at o, Wi(jw), can be expre
ssed by conventional FIR type Wi of length L+1 and
time to frequency domain transformation vector Zi(jw)
of length L+1 as follows:

W(jw)=Z,(je)W, 3)

i .

7 (F = 1 g™ @™ ... g
averspltem e ety
W=[w“ W, w, W, ]' (5)

where wiy is the i—th FIR coefficient of adaptive filter
W at time step £, and 7T is sampling interval.

Using (2) and (3), differentiation of cost function J
with respect to Wi gives true instantaneous gradient
vector VWy in time domain as

VW, = 2Re{H(jw)Z, (jw)x (@) (@)} ®)
Since we should use estimated cancellation path model

C instead of true cancellation path H in the gradient
calculation, the cstimated gradient is

VI, = 2Re{C(jo)Z, (jo)x. (@), (je)}
=2RelZ, () H(jo)CU)Z, (jo)lx ()| 7.
+2Re{Z, (jo)C(jw)P(jo) ) (@)f @
For further investigation, let's express the prescribed

transfer functions in terms of real and imaginary part
as follows:

Z(joy=Z +jZ, (8.a)
P(jw)= pcos@, + jpsing, (8b)
C(jw)=ccosg, + jesing, (&.c)
H(jw)=hcosg, + jhsing, (8.d)

where p, ¢, and h are magnitudes and ¢,, ¢., and ¢,

are phases of relevant transfer functions. Using (8),
estimated gradient in (7) can be rewritten in a matrx
equation (see Appendix A for details)

VW, = 2{ S H'CS, }W, +2{S,CP} ©)

where matrices Sy, H, C, and vector P are defined as

follows:

Sl_ = [Zu Zl., ] (10.a)

B cosg, sing,
"= qh[_ sing, cosgbhjl (10.b)

C= cos¢  sing
~ 9 sin $  cosg. (10.c)

cosg,

P Lﬁnfé,} (10.0)
q = |x ()] (10.)

Note that 2 by 2 matrices H and € are rotation
matrices of angles - ¢, and - ¢., respectively. The
matrix K =8 H'CS, in (9) is cross correlation matrix
of the two filtered reference signals through H and C.
This matrix is very important in the convergence pro-
cess. Let's denote the cross—correlation matrix as K.

K =8 H'CS ; cross—correlation matrix. (11)

Let’s introduce a parameter @ representing the phase
difference between H(w) and Cw), then from (10)
H'C term in matrix K is rearranged in terms of § as
follows:

d= ¢‘ - ¢h (12)
HC = a'h cosd sin@
=qne -sinf cosé (13)

Note that H°C is a rotation matrix of angle - @ which
causes unsymmetricity of K. If 6=0, K bhecomes
proportional to auto-correlation matrix of filtered re-
ference signal.

1II. Decomposition of K
Cross—correlatjion matrix K can be decomposed into
the following form (sec Appendix B for details)

K=U0A0"U, (14)
where L+1 by 2 matrix Urp is column space of Sp
satisfying U.U:=1, A is 2 by 2 diagonal matrix
having eigenvalues of K on its diagonal parts, and O
is 2 by 2 invertable matrix, Their detailed expressions
are as follows:

Ur. = B:.E/._| (158)
11 I -t
Q=(a,_cos(9+,h—aj_ sinG)I:I l:l-l_ﬂll:—l : ]
A =diag[2,.2,] (15h)
1+———’B’
=+q'hccos lcosd] 8
0 I- 1C05ﬂ (]BC)
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where Br, >, a1, and A1 are defined as follows:

costal sint ol
cos(+—Dewl  sin(<— DT

B = !

YoV L+1

cos(4— DNl —sin(4—Dal

cost el —sint@l (16.a)
l+e,
z =V 2 1
-a, 1
0 2 (16.)
sin( L+ DT
@ =" ‘
(L +Dsinewl (16.¢)
Fo=a-siné (16.)

The variable @ is a function of filter length L+1 and
wT. Note that wT is 2z times ol normalized target
frequency [/, Le. oT = 2zf/fs

Using (9), (11) and (14) update equation of
Filtered-X LMS algorithm; Wiwi=Wi— VW, can be
rewritten in modal domain weight vector @ ‘U W as
follows

(QUW,)=[1-2uAXQUW) -2pQ"USCP (17)

L7kl

Clearly, the convergence characteristics depend on
eigenvalues in A as well as the convergence para-
meter s, though the eigenvectors (the colurmns of Ur@)
may not orthogonal for non-zero value of #. From
(15.¢), the real parts of the two eigenvalues become
negative when |8] exceeds 90° which implies the
algorithm is unstable for any positive .

1V. Eigenvalue spread

The convergence speed can be controlled to some
extent by the convergence parameter x, but maximum
attainable speed is limited by the eigenvalue spread of
K. If the eigenvalue spread is unity, fastest convergence
is possible. So it is reasonable to state that the
convergence speed i1s mainly determined hy the ‘eigen-
value spread’ of K.

Al most, only two eigenvalues of K are non-zero
for a purc tone refcrence input. Also, two eigenvalues
of K are expected to be dominant for narrow band
reference input. In this section, the spread of the two
eigenvalues will be given in terms ol somc design
paramcters. By investigating the parameters included
in eigenvalue spread, some conditions that make it
unity can be found.

From (15.c) the eigenvalue spread r is

_|cos8+4,
 Jcosé5, (18)
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3
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Fig. 2. Eigenvalue spread along /(s with =0,

The resulting eigenvalue spread depends on three
parameters; the model phase error @, the adaptive
filter length L+1, and the normalized target [requency
. Tig. 2 shows eigenvalue spread r when 6=0
along the normalized target frequency f7; using (18)
with L=1,2 3, 4. This illustrates some useful pro-
perties. For example, if L=1, ie. with two adaptive
coefficients, eigenvalue sprcad becomes minimum and
the convergence specd can be maximized if the
sampling frequency is two times of the target
frequency. Also, on can see that as filter length
increases, the eigenvalue spread is lowered in average
sense. Thus, qualitatively it can be said that the long
filter length can Increase the convergence speed for
arbitrary f/7s.

Eigenvalue spread r becomes ils minimum, unity,
when £1=0. Frorn (16.d) this implies

sinf@=a; (19)

Using the value o defined in (16.c), optimum model
error o for fast convergence is determined as follows

. .| sin(L + DT
g, =*sin [ :] (20)

(L+D)sinwT
Note that there are two values of & whose absolute
values are equal to each other. If 8 0= 0, there needs
no extra effort to increase convergence speed; exact
phase model gives the eigenvalue spread unity.

Fig. 3 shows |8 .l along f4 using (20) with L=1,
2, 3, 4 Zero 0 ope ocours when sinL+-1) e T is zero, 1e.
normalized target frequency f/f: is equal to A/2(L~1)
for k=1, 2, ---, L. The L points when &4 =0 satisfies
r=1. If we could set £ to one of these values by
adjusting f;, no modification of exact cancellation path
model 1s necessary for faster convergence. If the
adjustment of f; is not allowed, introduction of optimal
phase ertor 0o could give faster convergence. This
will be discussed in detail In following section.
Another way to make . near zero is increasing L.
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Fig. 3. | 6o along ff

However, this increases computational burden in the
real-time process.

V. Optimum model design

We will now describe how Llhe cancellation path
model can be modified to get fast convergence. We
assume that cancellation path model C is FIR typc
with Af+1 taps and is estimated prior to implementing
Filtered-X LMS so that it can be said ‘exact’ around
the known target frequericy «. This model can be
obtained by exciting the cancellation path with periodic
signal containing periodic signal of frequency w.

C‘"‘["n < c\,]'; accurate model of H at o (21)

A transformation matrix F through which optimal
cancellation path Cur cant be calculated from C will be
presented. The desired mathematical expression is

C,=FC (22)
Let’s denote that Cojw) 1s the frequency response of
Cot(z) at w. Providing that C( @) is equal to Hjw),

the phase difference between Cox(fw) and Cw) must
be 99,_;5, ze

C,(jw)=e""C(jw) (23)

A equivalent matrix expression is

Z cos@  -sinf 7
Aix C = ) upr o x C
Z., ™ |sm@, cos a1z, (24)
Comparing (22) and (24), the transformation matrix I7 is
g Z, |[cos@, -siné,|Z,
- Z,||sind,, cos@, {7, (25)

where superscript = is pseudo inverse. Noting that
from (10.2) [Zux Zne] is Sa, and using (15.a) and
(A1), F becomes

FeB s cosd,, -sind .
ST sing,, cosf,, |V (26)

where two matrices By and 2 are in (16.a) and
(16.b), respectively.

Overall procedure of getting Cypr can be summarized
as follows.

1. Obtain € by modeling the cancellation path.

1. Select adaptive filler length L+1 and w 7(= 2x575).
3. Calculate 8. from (20).

4. Calculate F from (26)

5. Calculate Cyn from (22).

Replacing the ((z) with Com(2) in the Filtered-X
LMS algorithms of Fig. 1, faster convergence speed
becomes possible.

V1. Computer simulations
In computer simulation, adaptive weight length is
set to 2, Le, Wiz =wprwz ', and the plant P(2) and
cancellation path H(z) are chosen as follows

P(Z) =032+ 27+ 2z 4271012
H(z)==" +25" (be. H=[000012])

We chose 30% of maximum stable ¢ for all cases
and injected white noise at er whose variance is
(10™)/3 to make it the desired cost function at steady
state. Fig. 4 shows time cdomain squared error and
weight trajectories when f/f: = 0.2 for (a) conventional
C, 1) Cum using |8 oml, (©) Con using -1 0wl. Fig. 5
and Fig. 6 show the same when £/, =04 and /4. =08,
respectively,
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5 H-]
525 2 P [ o 6! o 2 4 [
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: Waight ryectory :

(a) conventional C ¢ (b) C,using (] | (€) €, using &,
r=01056 : =1

w=0.0061 #=0,0105

Waeight rajectary Weight trajectary

r=1
n=001t1
Fig. 4. Cost [unction Jrx and weight trajectory
(wowr) when f£.=02 (| 0 = 54°). (* :
optimum weight)

Computer simulations including proposed optimum
cancellation path model G using |8l or =18 gl
leads faster convergence of the cosl function than the
case using exact model. The optimum cancellation
path increases the convergence speed more for the
case of smaller r In non-optimized situation. The
weight trajectory is distorted if the phase error is
introduced to wmodify €. This trajeclory is closely
related with the right eigenvectors of K, iLe. the
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Fig. 6. Cost function Jr and weight trajectory
(wow1) when =08 (|0l =54°). (x :
optimum weight)

columns of Ui@. Tt is interesting that the shape of the
trajectories have no relation to the convergence speed
as shown in the simulation results. The starting
direclions of trajectories when using | 8 opl and -] @ ol
are in opposite side with respect to that of the
conventional case.

V1. Conclusions

A method of modifying cancellation path model to
increase the convergence speed of the Filtered-X LMS
algorithm for narrow-band noise suppression application
was presented. Presented method inserts intentional
phase error to the cancellation path model that is
originally well estimated around the target frequency.
The intentional phase error was optimally calculated to
lower the eigenvalue spread to its mimnimum. Some
Nustrative examples verified the proposed framework
to speed up the convergence of Filtered-X LMS,

Obtained convergence characteristic is similar to LS
method that uses Inversion of correlation matrix
because the eigenvalue spread is adjusted to unity.
The merit of proposed method compared to LS method
is that there is no increase in computational load in

real-time application because modifying the model can
be done prior to control stage.

References

[1] B. Widrow, S. D. Stearns, “Adaptive signal pro-
cessing,” Prentice-Fall. Ic. 1985.

[2) S. D. Snyder, C. H. Hansen, “The influence of
transducer transfer functions and acoustic time
delays on the implementation of thc LMS algori-
thm in active noisc control system,” Journal of
Sound and Vibration, vol. 141, no. 3, pp. 409-424.
1990.

[3] S. D. Snyder and C. I1. Hansen, “The effects of
transfer [unction estimation errors on the Filter-
ed-X LMS algorithm,” IEEE, SF, vol. 42, no. 4, pp.
950-953. 1994.

[4] H. S. Kim, Y. Park, “Delayed-X LMS algorithm :
an efficient ANC algorithm utilizing the robustness
of cancellation path model,” Journal of Sound and
Vibration, vol. 212, no. 5, pp. 875-837, 1993.

Appendix A: Derivation form (7) to (9)
The derivation consists of proofs of following two
equalities

Re{Z, (jo)H(jo)C(jo)Z, (je)la’ = S,H'CS; (A1)

Re{7, (jo)C(jw)P(jw)lg’ = $.CP (A2)

1. Proof of (A1)
Let's denote HGw)CGw)=ax+jay, then the left-
hand side of (A.1) can be aranged as follows:
Re{Z, (jo)H(jo)C(jo)Z,(jo)lq
=Re{(Z, + jZ, Na, + ja\Z, +jZ,)}a’

=la(7,7,+2,Z )+ a(Z,Z, - 2,Z,)}q"

|z, =z, ][_‘Z Z }E }f (A.3)

Denoting A and / as real and complex parts of H(jw),
and ¢ and ¢ as rcal and imaginary parts of C(w),
also as we denoted H(jw)C(Gw)=a*jay, a: and ay
becomes

a =hc +he, (A4
a =hec —hc (A5)

Thus, the 2 by 2 matrix in (A-3) is
a_ a he +he  he —he,
—a, a, - —he +hc, he t+he,
h =h| e ¢
Tlhoh |- c, (A.B)

From (A.3), (A.6), and using the definitions of (10.a)-
(10.e), the proof of equality (A.1) is straightforward.
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2. Proof of (A.2)
let's denote Cjw) PGw)=by+jb,, then the left-
hand side of (A.2) can be arranged as follows:
Rel Z, (j)Cjw)P(je)}q’
=Re{(Z, + jZ,)b, + jb)]’
= (Zub\ - ZI.)b) )ql

= [Z,_‘ z, ][fb }q‘ (A7)

Denoting p. and py as real and complex parts of P(iw),
and ¢ and ¢ as real and imaginary parts of CGw),
also as we denoted Ciw) P(Gw) = by +jb,, by and by
becomes

b =ep +cp, (A8)
b=cp-cp, (A9)

Thus, the 2 by 1 vector in (A-7) is
b cp tep,
~b, N -c,p, +c.p,
C' C"J ‘UY
Tl c|p (A.10)

From (A.7), (A.10), and using the definitions of (10.a)-
{10.e), the proof of equality (A.2) is straightforward.
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Appendix B: proof of S, HCS =U,QA0 'U,
Let's consider singular value decomposition of St

S/, = UI. El ,/I., (B-l)

where L+1 by 2 matrix Ur and 2 by 2 matrix 2, are
given in (15.a) and (16.h), while V7 is 2 by 2 rotation
matnx as follows

(B.2)

p costwl  sindael

"\ -sintal  costaT

Using the property that Vi, H and C are scaled

rotation matrices and commutable to each other, the
cross—correlation matrix K can be rearranged as

K=SHCS!
=U X VHCV ZU,
=UZ HCZU (B.3)

There exist invertable mairix @ and diagonal matrix A
whose diagonal elements are eigenvalues of SLHCEL
such that

ZHCI =04Q" (B.4)

where precise expression of @ and /A are given in
(1b.b) and (15.¢c), respectively. Thus, combining (B.3)
and (B4) with variables as in (15) and (16), K is
decomposed into U,0AQ7'U,;,
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