• Title/Summary/Keyword: Active Solar System

Search Result 148, Processing Time 0.026 seconds

Active Solar Heating System Design & Analysis Program (설비형 태양열시스템 설계분석 프로그램 개발)

  • Shin, U-Cheul;Baek, Nam-Choon
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.4
    • /
    • pp.11-20
    • /
    • 2003
  • This study aims to develop the program for active solar heating system design & analysis. The program, named ASOLis, is consisted of three user's interface like as system input/output, library, and utilities and used TRNSYS as a calculation engine for the system analysis. ASOLis simplifies user's input data through the database and can design 37 different types of solar systems. Solar system is configurated by two separated parts "solar thermal collecting part" and "load supplying part". Due to the user-friendly layout, all design parameters can be changed quickly and easily for the influence on system efficiency. For the reliability, ASOLis compared with experimental result. As a result, ASOLis is expected to be used as a vital tool for the design and analysis of active solar heating system.

Active Solar Heating System Design and Analysis for the Zero Energy Solar House (제로에너지 솔라하우스의 난방/급탕용 태양열 시스템 설계 및 분석)

  • Baek, N.C.;Yoo, C.K.;Yoon, E.S.;Yoo, J.Y.;Yoon, J.H.
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.4
    • /
    • pp.1-9
    • /
    • 2002
  • This study is on the design and evaluation of Zero Energy Solar House(ZeSH) including active solar heating system. Various innovative technologies such as super insulation, passive solar systems, super window, ventilation heat recovery system...etc were analyzed by individual and combination for the success of ZeSH. The ESP-r simulation program was used for this. Simulation results shows that almost 77% of heating load can be reduced with the following configuration of 200mm super insulation, super windows, passive solar system and 0.3 ventilation rate per hour. Active solar heating system (ASHS) was designed for the rest of the heating load including hot water heating load. The solar assisted heat pump is used for the auxiliary heating device in order to use air conditioner but not included in this study. The yearly solar fraction is 87% with a solar collector area of $28m^2$. The parametric studies as the influence of storage volume and collector area on the solar fraction was analyzed.

A Study on the Application of Solar Energy System in Apartment Complex (공동주택단지에서의 태양에너지 시스템 적용에 관한 연구)

  • Jung, Sun-Mi;Chung, Min-Hee;Park, Jin-Chul;Rhee, Eon-Ku
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.43-48
    • /
    • 2009
  • In this study, through case studies, solar energy systems were coordinated with architectural plan elements and the others in apartment complex, and the energy performance was evaluated quantitatively through computer simulation PVSYST and RETScreen. As a results, in plan process of the application of solar energy systems in apartment complex, solar energy system should be considered as not only energy reducing technical element but also part of architectural plan element. And it must be considered with architectural plan elements, composition methods, energy storage methods, technical elements from the early basic plan stage. Photovoltaic system was installed on the wall facing the south and rooftop. The energy ratio of electric load was shown to be 5.5%. The result showed 7.2% when adding it to shading device additionally, and 6.4% in case of putting extra translucent module on windows. Active solar collecting system was applied on roof with the angle of 45. Maximum number of solar collector was 10 in a row, and the total solar collecting area was $915.00m^2$. The energy ratio of domestic water heating load by active solar hot water system is shown to be 11.4%.

  • PDF

The Experimental Research for the Collecting Characteristics of the Passive and Active type Domestic Solar Hot Water Systems (자연형 및 설비형 태양열 온수기의 집열특성에 대한 실험적 연구)

  • Lee, Dong-Won;Lee, Kyoung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.6
    • /
    • pp.12-18
    • /
    • 2013
  • Domestic solar hot water system can be divided into a passive type and an active type. In a passive type the storage tank is horizontally mounted immediately above the solar collectors. No pumping is required as the hot water naturally rises into the storage tank from the collectors through thermo-siphon flow. While, in an active type the storage tank is ground- or floor-mounted and is below the level of the collectors; a circulating pump moves water or heat transfer fluid between the storage tank and the collectors. We installed two types solar hot water systems consisting of the same storage tank and collectors at the same place, and were measured and compared typical operating characteristics under the same external conditions. In particular, the daily system performance was presented through the stirring test after the sunset. The results show that the amount of solar radiation obtained for an active type were less than a passive type on a cloudy day, because the operation of the circulation pump stops frequently took place on that day. However, on a sunny day, depending on the stable operation of the circulation pump, the amount of solar radiation obtained for an active type were increased than a passive type.

A sun tracking control system using two DOF active sensor array

  • Ha, Yun-Su;Kim, Jong-Hwa
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1310-1317
    • /
    • 2014
  • In our daily life, the need of energy increases day by day. However, the amount of natural resources on the earth is limited and thus gaining renewable energy as an energy resource is one of the important and urgent problems. Solar energy is one of the most popular available energy sources that can be converted into electricity by using solar panels. In order for solar panels to produce maximal output power, the incident angle of the sunlight needs to be persistently perpendicular to the solar panel. By the way, most of the solar panels are installed at fixed position and direction. Therefore, as the sun's position changes, it is impossible to produce maximal output power inevitably. To improve this problem, in this paper, a sun tracking system using two degree-of-freedom (DOF) active sensor array is proposed so that the solar panel may always direct sunlight perpendicularly. And also a series of software, such as a search mode and a holding mode, which can control the developed sun tracking system is developed. Several experiments using the implemented sun tracking system are executed and the effectiveness of the system is verified from the experimental results.

The Experimental Research for the Use Characteristics of the Passive and Active type Domestic Solar Hot Water Systems (자연형 및 설비형 태양열 온수기의 이용특성에 대한 실험적 연구)

  • Lee, Dong-Won;Kwak, Hee-You
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.5
    • /
    • pp.82-88
    • /
    • 2013
  • There are the stirring test and drain test in the daily performance test to determine the thermal performance of a domestic solar hot water system. The drain test is a test that measures the discharge heating rate while drain the hot water from the top of the storage tank and supply the city water to the bottom of the tank. From the perspective of the user, this drain test is more effective than the stirring test. In this study, the thermal performance were compared through the drain test for a passive type and an active type domestic solar hot water systems consisting of the same storage tank and collectors. At this point, a passive type was used the horizontal storage tanks, and an active type was used vertical storage tank. In the drain test, when the hot water drained up to the reference hot water temperature, an active type which have vertical storage tank represents excellent daily performance than a passive type which have horizontal storage tank regardless of weather conditions. The reason for this is because the vertical storage tank is advantageous to thermal stratification in the tank. After the drain test, the residual heat for the horizontal storage tank was much more than the vertical storage tank, but in the next day the amount of discharged heat were less than the those of vertical storage tank neither. Thus, the solar water heating system which have horizontal storage tank should be adopted preheating control method rather than separate using control method when connected with auxiliary heat source device.

Comparison Study on Power Output Characteristics of Power Management Methods for a Hybrid-electric UAV with Solar Cell/Fuel Cell/Battery

  • Lee, Bohwa;Kwon, Sejin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.4
    • /
    • pp.631-640
    • /
    • 2016
  • A dual-mode power management for a hybrid-electric UAV with a cruise power of 200W is proposed and empirically verified. The subject vehicle is a low-speed long-endurance UAV powered by a solar cell, a fuel cell, and a battery pack, which operate in the same voltage bounds. These power sources of different operational characteristics can be managed in two different methods: passive management and active management. This study proposes a new power management system named PMS2, which employs a bypass circuit to control the individual power sources. The PMS2 normally operates in active mode, and the bypass circuit converts the system into passive mode when necessary. The output characteristics of the hybrid system with the PMS2 are investigated under simulated failures in the power sources and the conversion of the power management methods. The investigation also provides quantitative comparisons of efficiencies of the system under the two distinct power management modes. In the case of the solar cell, the efficiency difference between the active and the passive management is shown to be 0.34% when the SOC of the battery is between 25-65%. However, if the SOC is out of this given range, i.e. when the SOC is at 90%, using active management displays an improved efficiency of 6.9%. In the case of the fuel cell, the efficiency of 55% is shown for both active and passive managements, indicating negligible differences.

Interfacial Layers for High Efficiency Polymer Solar Cells

  • Kim, Youn-Su;Choi, Ha-Na;Son, Seon-Kyoung;Kim, Ta-Hee;Kim, Bong-Soo;Kim, Kyung-Kon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.74-74
    • /
    • 2011
  • Polymer solar cells utilize bulk heterojunction (BHJ) type photo-active layer in which the electron donating polymer and electron accepting C60 derivatives are mixed together. In the BHJ system the electron donating polymer and electron accepting C60 derivatives are blended. The blended system causes charge recombination at the interface between the BHJ active layer and electrode. To reduce the charge recombination at the interface, it is needed to use an interlayer that can selectively transfer electrons or holes. We have developed solution processable wide band gap inorganic interfacial layers for polymer solar cells. The effect of interlayers on the performance of polymer solar cell was investigated for various types of conjugated polymers. We have found that inorganic interfacial layers enhanced the solar cell efficiency through the reduction of charge recombination at the interface between active layer and electrode. Furthermore, the stability of the polymer solar cell using the interlayer was significantly improved. The efficiency of 6.5% was obtained from the PTB7:PCBM70 based solar cells utilizing $TiO_2$nanoparticles as an interlayers.

  • PDF

Simnlation of a Thermal Behavior in Solar Heating and Cooling System with respect to Demand Room Temperature (실내 설정온도에 따른 태양열 냉난방 시스템의 동적 거동 해석)

  • Jang, H.Y.;Lee, S.B.;Chung, K.T.;Suh, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3446-3451
    • /
    • 2007
  • The thermal behavior of a building in response to heat input from an active solar space heating system is analysed to determine the effect of the variable storage tank temperature on the cycling rate, on and off temperature of a heating cycle and on the comfort characteristics of room air temperature. A computer simulation of the system behavior has been performed and verified by comparisons with various parameters. Especially, this study is focused on the effect of the system's performance when subjected to dynamic cooling loads. The heat input to the absorption system is provided by an array of solar collectors that coupled to a thermal storage tank.

  • PDF

Design and Operation of Self-Powered Arduino System for Solar Energy Harvesting (태양에너지 하베스팅을 위한 자가발전 아두이노 시스템의 설계 및 동작)

  • Yoon, Il Pyung;Myeong, Cho Seung;An, Ji Yong;Oh, Seok Jin;Min, Kyeong-Sik
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.483-487
    • /
    • 2022
  • In this paper, we design a self-powered Arduino system for solar energy harvesting and explain its operation. To perform the operation, the Arduino system senses the amount of solar energy that changes every moment and adjusts the ratio of the active mode and sleep mode operation time according to a given solar light intensity. If the intensity of sunlight is strong enough, the Arduino system can be continuously driven in active mode and receive sufficient power from sunlight. If not, the system can run in sleep mode to minimize power consumption. As a result, it can be seen that energy consumption can be minimized by reducing power consumption by up to 81.7% when using sleep mode compared to continuously driving active mode. Also, when the light intensity is at an intermediate level, the ratio between the active mode and the sleep mode is appropriately adjusted according to the light intensity to operate. The method of self-control of the operating time ratio of active mode and sleep mode, proposed in this paper, is thought to be helpful in energy-efficient operation of the self-powered systems for wearables and bio-health applications.