• Title/Summary/Keyword: Active Impedance Control

Search Result 92, Processing Time 0.022 seconds

Active Vibration Control Method Using Frequency Controllable Piezoelectric Transducer (주파수가변 압전 트랜스듀서를 이용한 능동제진법)

  • Kim, Jung-Soon;Kim, Moo-Joon;Ha, Kang-Lyeol;Kang, Sung-Hak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.1E
    • /
    • pp.27-32
    • /
    • 2007
  • Hydraulic actuator and electro-magnetic liner actuator have been used as typical active vibration control methods. However these methods have many kinds of disadvantages such as causing space limit, difficult maintenance, complicate structures, etc. The purpose of this paper was to study on the possibility of active vibration control using piezoelectric transducer. Piezoelectric transducer generated a vibration and GIC (General Impedance Converter) amplifier was adopted to give adjustable vibration signal to transducer and high amplitude of vibration. Resonance frequency of piezoelectric transducer was controlled by GIC amplifier and higher amplitude of vibration was achieved. Finally active vibration control using piezoelectric transducer was performed.

Modified droop control scheme for load sharing amongst inverters in a micro grid

  • Patel, Urvi N.;Gondalia, Dipakkumar;Patel, Hiren H.
    • Advances in Energy Research
    • /
    • v.3 no.2
    • /
    • pp.81-95
    • /
    • 2015
  • Microgrid, which can be considered as an integration of various dispersed resources (DRs), is characterized by number of DRs interfaced through the power electronics converters. The microgrid comprising these DRs is often operated in an islanded mode. To minimize the cost, reduce complexity and increase reliability, it is preferred to avoid any communication channel between them. Consequently, the droop control method is traditionally adopted to distribute active and reactive power among the DRs operating in parallel. However, the accuracy of distribution of active and reactive power among the DRs controlled by the conventional droop control approach is highly dependent on the value of line impedance, R/X i.e., resistance to reactance ratio of the line, voltage setting of inverters etc. The limitations of the conventional droop control approach are demonstrated and a modified droop control approach to reduce the effect of impedance mis-match and improve the time response is proposed. The error in reactive power sharing is minimized by inserting virtual impedance in line with the inverters to remove the mis-match in impedance. The improved time response is achieved by modifying the real-power frequency droop using arctan function. Simulations results are presented to validate the effectiveness of the control approach.

Implementation of Active Impedance Based on Linear Motors (리니어 모터에 근거한 능동 임피던스 구현)

  • 이세한;송재복;김용일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.462-465
    • /
    • 1995
  • In this research a 2-dimensional motion producer based on two linear motors was developed. When the tester provides some motion through the level attached to the upper moving part of the motion producer, it provides the arbitrary intertia, damping and stiffness characteristics without actual change in physical structure of the motion producer. That is, the active impedance is implemented by controlling input currents supplied to the linear motors. A PID controller with feedforward loop was used to control the currents and pre-processing of input velocity and accleration singals from the encoder and the current singnal from the motor driver circuit are conducted to improve the performance.

  • PDF

TWO TYPES OF ACTIVE NOISE CONTROL SYSTEM USING MFB LOUDSPEAKER

  • Nishimura, Yoshitaka;Shimada, Yasuyuki;Usagawa, Tsuyoshi;Ebata, Masanao
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.764-769
    • /
    • 1994
  • The impedance of an electro-acoustic transducer can be controlled by motional feedback, and the noise in a duct can be reduced actively by adjusting the impedance using an additional sound. In this paper, two approaches for active noise control using motional feedback (MFB) loudspeaker are described. First configuration uses an external sensor to pickup of source directly. In this configuration, the adaptation of controller is necessary to compensate the change of transfer function from noise source to control poing. The second configuration uses a new adaptive algorithm specialized for peridic noise. Because this configuration does not require any reference input and the error sensor couples very tightly with control loudspeaker, this MFB system itself is independent of the duct condition. No microphone are required in both configurations, so that a more reliable and stable active control system can be realized under severe conditions such as high pressure, high temperature, dust, flow and so on.

  • PDF

Reproduction of Arm Kinesthetic Sense in Virtual Environment Using Bilateral Control (양방향 제어를 이용한 가상환경에서의 팔운동감 제시)

  • 정웅철;민두기;송재복;김용일
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1999.11a
    • /
    • pp.97-100
    • /
    • 1999
  • Human feels kinesthetic sense in response to the force acted on him. In order to represent kinesthetic sense, a force is analyzed as mechanical impedance (i.e., stiffness or damping) and implemented by active impedance control. In this research, a 3-dimensional arm motion generator is developed to present various mechanical impedance characteristics to an operator. An introduction of virtual reality provides not only a visual effect in virtual environment but also the change in force synchronized with the visual effect in real time.

  • PDF

The study on Reactor Parameters of Atmosphere Plasma Power Supply (대기압 플라즈마 전원장치의 반응기 파라메터에 관한 연구)

  • Lee, Woo-Cheol;Lee, Taeck-Ki
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.6
    • /
    • pp.59-65
    • /
    • 2012
  • This paper presents a digital control solution which can extract the reactor parameters in atmosphere plasma power supply. The critical issue of the atmosphere plasma power supply is a impedance matching. For the impedance matching, the reactor parameters should be known, but the parameters depend on the reactors. Therefore, the reactor parameters have to measure for the impedance matching. The proposed method is performed by detection of phase difference between inverter voltage and current, and extraction of impedance through active, reactive power.

Active Damping of LLCL Filters Using PR Control for Grid-Connected Three-Level T-Type Converters

  • Alemi, Payam;Jeong, Seon-Yeong;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.786-795
    • /
    • 2015
  • In this paper, an active damping control scheme for LLCL filters based on the PR (proportional-resonant) regulator is proposed for grid-connected three-level T-type PWM converter systems. The PR controller gives an infinite gain at the resonance frequency. As a result, the oscillation can be suppressed at that frequency. In order to improve the stability of the system in the case of grid impedance variations, online grid impedance estimation is applied. Simulation and experimental results have verified the effectiveness of the proposed scheme for three-phase T-type AC/DC PWM converters.

Finite Element Analysis of a Tile Projector for Control of Low-frequency Underwater Echoes (저주파 수중 반향음 제어를 위한 타일형 프로젝터의 유한요소 해석)

  • Lee, Jae-Wan;Woo, Sangbeom;Ohm, Won-Suk;Seo, Youngsoo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.625-629
    • /
    • 2014
  • In this paper, a tile projector for the active control of low-frequency underwater echoes is studied using finite element method. Compared to the existing underwater actuators used for echo reduction, the tile projector is better suited for covering a wide area such as the hull of a submarine. In order to actively match the acoustic impedance at the water-object interface, the projector is driven to radiate a pressure wave that is the inverted replica of the echo at the interface. Finite element simulations demonstrate significant echo reductions due to the active impedance matching by the tile projector.

  • PDF

Control Strategy and Characteristic Analysis of Hybrid Active Power Filters with the Resonant Impedance Principle

  • Fang, Lu;Xu, Xian-Yong;Luo, An;Li, Yan;Tu, Chun-Ming;Fang, Hou-Hui
    • Journal of Power Electronics
    • /
    • v.12 no.6
    • /
    • pp.935-946
    • /
    • 2012
  • A new kind of resonant impedance type hybrid active filter (RITHAF) is proposed for dynamic harmonic current suppression and high capacity reactive compensation in medium and high voltage systems. This paper analyzed the different performance of the RITHAF when the active part of the RITHAF is controlled as a current source and as a voltage source, respectively. The harmonic suppression function is defined in this paper. The influences of the changes caused by the grid impedance and the detuning of the passive power filter on the compensating characteristics of the RITHAF are studied by analyzing the suppression function. Simulation and industrial application results show that the RITHAF has excellent performances in harmonic suppression and reactive compensation, which is suitable for medium and high voltage systems.

Sensorless Force Control with Observer for Multi-functional Upper Limb Rehabilitation Robot (다기능 재활운동을 위한 힘 센서가 없는 상지 재활 로봇의 힘 제어)

  • Choi, Jung Hyun;Oh, Sehoon;An, Jinung
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.3
    • /
    • pp.356-364
    • /
    • 2017
  • This paper presents a force control based on the observer without taking any force or torque measurement from the robot which allows realizing more stable and robust human robot interaction for the developed multi-functional upper limb rehabilitation robot. The robot has four functional training modes which can be classified by the human robot interaction types: passive, active, assistive, and resistive mode. The proposed observer consists of internal disturbance observer and external force observer for distinctive performance evaluation. Since four training modes can be quantitatively identified as impedance variation, position-based impedance control with feedback and feedforward controller was applied to the assistive training mode. The results showed that the proposed sensorless observer estimated cleaner and more accurate force compared to the force sensor and the impedance controller embedded with the proposed observer completed the assistive training mode safely and properly.