• Title/Summary/Keyword: Active Design

Search Result 4,099, Processing Time 0.025 seconds

A Design of the Active Web Server Supporting Synchronous Collaboration in the Web-Based Group Collaboration Systems (웹 기반 그룹 협동 시스템에서 동기화된 협동을 지원하기 위한 능동형 웹 서버 설계)

  • 허순영;배경일
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.03a
    • /
    • pp.95-102
    • /
    • 1999
  • The web-based group collaborative systems are emerging as enterprise-wide information systems. Since data in group collaborative systems are apt to be shared among multiple concurrent users and modified simutaneously by them, the web-based group collaborative systems must support synchronous collaboration in order to provide users with synchronized and consistent views of shared data. This paper proposes an active web server which can facilitate synchronous collaboration in web-based group collaborative systems. To accomplish such a goal, the active web server manages dependency relationships between shared data and web browsers referencing them and actively propagates changing details of the shared data to all web browsers referencing them. And, this paper examines usefullness and effectiveness of the active web server to apply it to the ball-bearing design example of concurrent engineering design systems. The prototype system of the active web server is developed on a commercial Object-oriented Database Management System (ODBMS) called OBJECTSTORE using the C++ programming language.

  • PDF

Active Vibration Control of A Cantilever Beam Using $H_2$ Controllers ($H_2$ 제어기를 이용한 외팔보의 능동 진동 제어)

  • Choi, Soo-Young;Jung, Joon-Hong;Park, Ki-Heon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.7
    • /
    • pp.401-409
    • /
    • 2003
  • This paper describes the design and the performance analysis of an $H_2$ controller for noncollocated active vibrating systems. An experiment for the active vibration control of a flexible structure is performed. The experimental model used is a cantilever beam controlled by an active damping system consisting of a laser sensor and an electromagnetic actuator. The $H_2$ controller design is based on the reduced order model and the designed system is capable of attenuating vibration without causing spillover instability. The design procedure to prevent spillover instability is described via the sensitivity analysis. The performances of the controller are verified by experimental results.

Active Vibration Control of A Cantilever Beam Using Ha Controllers (H₂제어기를 이용한 외팔보의 능동 진동 제어)

  • Choe, Su Yeong;Jeong, Jun Hong;Park, Gi Heon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.7
    • /
    • pp.401-401
    • /
    • 2003
  • This paper describes the design and the performance analysis of an Ha controller for noncollocated active vibrating systems. An experiment for the active vibration control of a flexible structure is performed. The experimental model used is a cantilever beam controlled by an active damping system consisting of a laser sensor and an electromagnetic actuator. The $H_2$ controller design is based on the reduced order model and the designed system is capable of attenuating vibration without causing spillover instability, The design procedure to prevent spillover instability is described via the sensitivity analysis. The performances of the controller are verified by experimental results.

Design of an Active Suspension Controller with Simple Vehicle Models (단순 차량 모델을 이용한 능동 현가장치 제어기 설계)

  • Yim, Seongjin;Jeong, Jinhwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.3
    • /
    • pp.177-185
    • /
    • 2016
  • This paper presents a method to design a controller for active suspension with 1-DOF decoupled models. Three 1-DOF decoupled models describing vertical, roll and pitch motions are used to design a controller in order to generate a vertical force, roll and pitch moments, respectively. These control inputs are converted into active suspension forces with geometric relationship. To design a controller, a sliding mode control is adopted. Frequency domain analysis and simulation on vehicle simulation software, CarSim$^{(R)}$, show that the proposed method is effective for ride comfort.

A Study on the Controller Design for Active Vibration Control of flexible Cantilever Beam using Electromagnetic Actuators. (전자석 작동기를 이용한 유연 외팔보의 능동 진동 제어를 위한 제어기 설계에 관한 연구)

  • 최수영;정준홍;박기헌
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.1
    • /
    • pp.30-41
    • /
    • 2004
  • This paper is concerned with the active vibration control of flexible cantilever beam system using electromagnetic farce actuator. The main objective of this paper is to propose the control algorithms and to implement the experimental setups for active vibration control. Dynamic equations of the electromagnetic actuator and the beam are combined to find the transfer function from the electromagnetic actuator to the laser sensor. The final transfer function is determined by considering only the first and second modes, and experiments confirm that this model works well. Several control algorithms are proposed and implemented on the experimental setups to show their efficacy. These include a PID control design, an optimal H$_2$ control design, and a fuzzy PID control design. Effectiveness and performance of the designed controller were verified by both simulation and experiment results.

Control and Synchronization of New Hyperchaotic System using Active Backstepping Design

  • Yu, Sung-Hun;Hyun, Chang-Ho;Park, Mi-Gnon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.2
    • /
    • pp.77-83
    • /
    • 2011
  • In this paper, an active backstepping design is proposed to achieve control and synchronization of a new hyperchaotic system. The proposed method is a systematic design approach and exists in a recursive procedure that interlaces the choice of a Lyapunov function with the design of the active control. The proposed controller enables stabilization of chaotic motion to the origin as well as synchronization of the two identical new hyperchaotic systems. Numerical simulations illustrate the validity of the proposed control technique.

A study on development of hydraulic active suspension system (유압식 능동 현가시스템의 개발에 관한 연구)

  • 장성욱;박성환;이진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1459-1464
    • /
    • 1996
  • The most important parameter for hydraulic active suspension system is to sustain desirable vehicle maneuvering stability and ride comfort without increasing consumption power. The performance of hydraulic active suspension system depends on damping force of body damping valve and piston damping valve. Hydraulic actuator design and damping valve parameter selection are essential and basic procedure to design hydraulic active suspension system. This paper is on computer simulation with use of mathematical model that was delivered from dynamic characteristic of hydraulic actuator, as know basic damping characteristics of hydraulic active suspension system. The aim of this paper is to select the system parameter that affect mainly hydraulic active suspension, and identify the validity on the system parameter selection.

  • PDF

A Compact Active Channel Module Design for Active Phased Array Antenna System

  • Jung, Young-Bae
    • Journal of IKEEE
    • /
    • v.17 no.4
    • /
    • pp.393-397
    • /
    • 2013
  • This paper introduces the T/RX combined compact active channel module which is a key unit of the active phased array antenna(APAA) system. This module is mainly compoased of two parts for TX and RX fabricated on both sides of the active module for size reduction. The TX-part is primarily composed of a 3-stage amplifier, a microstrip phase shifter, a thermal compensation and a power detection circuit. The RX-part is composed of LNAs a microstrip phase shifter and BPFs for TX power rejection. Using the proposed design structure we can realized a compact active channel module having high performance.

A Study on the Design Parameter of Semi-active Control System for the Vehicle Suspension (자동차용 현가장치의 반능동 제어 시스템의 설계파라미터에 대한 연구)

  • Park, Ho;Hahn, Chang-Su;Rhee, Meung-Ho;Roh, Byung-Ok
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.1
    • /
    • pp.97-103
    • /
    • 2002
  • In the determination of control laws of semi-active suspension system, optimal control theory is applied, which used in the design of fully active suspension system and in the performance index sense. Optimal semi-active control laws are designed, and the computer program is developed fur estimation of performance In the time and frequency domain. It is certified that in the semi-active control system, it is desirable to minimize the spring constant and damping coefficient as possible in the given constraints. The effect of performance improvement which is almost equal to fully active type is obtained.

Dynamic Modeling and Active Controller Design for Elevator Lateral Vibrations (엘리베이터 횡진동 동적 모델링 및 능동진동제어기 설계)

  • Kwak, Moon-K.;Kim, Ki-Young;Baek, Kwang-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.2
    • /
    • pp.154-161
    • /
    • 2011
  • This paper is concerned with the modeling and active controller design for elevator lateral vibrations. To this end, a dynamic model for the lateral vibration of the elevator consisting of a supporting frame, cage and active roller guides was derived using the energy method. Free vibration analysis was then carried out based on the equations of motion. Active vibration controller was designed based on the PID control algorithm and applied to the numerical model. Rail irregularity were considered as external disturbance in the numerical simulations. The numerical results show that the active vibration control of elevator is possible.