• Title/Summary/Keyword: Active & reactive power

Search Result 460, Processing Time 0.022 seconds

Study on Emergency Generator Capacity Selection(PG3) in the Chemical Plant (화학 플랜트에서의 비상발전기 용량선정 방안(PG3)에 관한 연구)

  • Lee, Seung-Jae;Jo, Man-Young;Kim, Se-Yong;Kim, Eun-Tae;Kang, Byoung-Wook;Park, Han-Min;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.12
    • /
    • pp.55-60
    • /
    • 2015
  • PG and RG methods are widely known method for calculating the capacity of the emergency generator in construction electrical installation. PG and RG methods are mainly used as a saving a life, fire protection, fire fighting in construction. Because no long distance between the emergency generator and electric motor feeder, the relatively small motor power in construction electrical installation, the capacity of generator in PG and RG methods are little problem of voltage and reactive power of generator. However in many cases the application of the PG and RG method is difficult in the Chemical Plant because it is long distance between the generator and the motor Feeder and motor capacity is very large. Motor starting power factor is about 0.2 lagging power factor and motor starting current is about 6times during motor staring. Also Most of the staring current component is a reactive power component. therefore, it is many cases that lack of reactive power and excess of allowable voltage drop limit and After selection of emergency diesel generator, problems happen during motor starting. Therefore, to be selection of effective emergency generator, active generator power, reactive power and the required reactive power during large motor starting should be considered in chemical plant. It is also required of the verification process through simulation because hand calculation is very difficult considering study cases.

A Study on the Improvement for Power Quality Problems Caused by Electrical Arc Furnace in Power Systems (전력계통에서 전기로 부하에 대한 전력품질 개선방안에 관한 연구)

  • Kim, Jae-Eon;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.3
    • /
    • pp.444-453
    • /
    • 2007
  • This paper deals with a powerful countermeasure for power quality problems caused by the operation of electrical arc furnace in bulk power systems. The rapid active load fluctuations of electrical arc furnace could produce several problems such as voltage flicker and active power oscillations. The typical methods using only the reactive power compensation have their own limitation in solving the power quality problems caused by active load variations. The coordination of both active and reactive power compensation is required to solve the power quality problems. This paper focuses on the impacts and the dynamic phenomena caused by the active load fluctuation. This paper proposes the optimal algorithm for the active power compensation based on the function of 1(n ratio and the concepts for the active power compensation. The results from a case study show that the proposed methods can be a practical tool for the power quality problems in power systems.

  • PDF

Transient Stability Enhancement of Power System by Using Energy Storage System (에너지저장시스템을 이용한 전력계통의 과도안정도 향상)

  • Seo, Gyu-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.26-31
    • /
    • 2017
  • The conventional method of improving the transient stability in a power system is the use of reactive power compensation devices, such as the STATCOM and SVC. However, this traditional method cannot prevent the rapid voltage collapse brought about by the stalling of the motor due to a system fault. On the other hand, the ESS (Energy Storage System) provides fast-acting, flexible reactive and active power control. The fast-acting power compensation provided by an energy storage system plays a significant role in enhancing the transient stability after a major fault in the power system. In this paper, a method of enhancing the transient stability using an energy storage system is proposed for power systems including a dynamic load, such as a large motor. The effectiveness of the energy storage system compared to conventional devices in enhancing the transient stability of the power system is presented. The results of the simulations show that the simultaneous injection of active and reactive power can enhance the transient stability more effectively.

A Single-Phase Hybrid Active Filter for AC Electrified Railway Systems (교류전기철도 급전시스템의 전기품질 향상을 위한 단상 하이브리드 능동필터)

  • Park, Han-Eol;Song, Joong-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.2
    • /
    • pp.152-158
    • /
    • 2010
  • Generally, the AC electrified railway systems have the power quality problems that are induced from the harmonic currents and the reactive power. This paper presents a single-phase hybrid active filter adopting a SRF(synchronous-reference-frame) control for improving power quality in the AC electrified railway systems. The single-phase hybrid active filter can compensate the harmonic currents and the reactive power through the proposed SRF control algorithm. The proposed control algorithm can extract the third and fifth harmonics through the MSRF(multiple-synchronous-reference-frames) which is used to apply the three-phase systems. Therefore, the hybrid active filter can compensates only the high-frequency harmonic currents whereas the passive filter compensates the low-frequency harmonic currents. Also, the proposed SRF control algorithm can compensate the reactive power by the closed-loop control. The Validity and the effectiveness of the proposed SRF control method for the hybrid active filter are illustrated through the simulation results.

Modified droop control scheme for load sharing amongst inverters in a micro grid

  • Patel, Urvi N.;Gondalia, Dipakkumar;Patel, Hiren H.
    • Advances in Energy Research
    • /
    • v.3 no.2
    • /
    • pp.81-95
    • /
    • 2015
  • Microgrid, which can be considered as an integration of various dispersed resources (DRs), is characterized by number of DRs interfaced through the power electronics converters. The microgrid comprising these DRs is often operated in an islanded mode. To minimize the cost, reduce complexity and increase reliability, it is preferred to avoid any communication channel between them. Consequently, the droop control method is traditionally adopted to distribute active and reactive power among the DRs operating in parallel. However, the accuracy of distribution of active and reactive power among the DRs controlled by the conventional droop control approach is highly dependent on the value of line impedance, R/X i.e., resistance to reactance ratio of the line, voltage setting of inverters etc. The limitations of the conventional droop control approach are demonstrated and a modified droop control approach to reduce the effect of impedance mis-match and improve the time response is proposed. The error in reactive power sharing is minimized by inserting virtual impedance in line with the inverters to remove the mis-match in impedance. The improved time response is achieved by modifying the real-power frequency droop using arctan function. Simulations results are presented to validate the effectiveness of the control approach.

The Development of the Transmission Marginal Loss Factors with Consideration of the Reactive Power and its Application to Energy Spot Market (무효전력을 고려한 한계송전손실계수 산정 방법론 개발 및 현물시장에의 적용)

  • 박종배;이기송;신중린;김성수
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.7
    • /
    • pp.429-436
    • /
    • 2003
  • This paper presents a new approach for evaluating the transmission marginal loss factors (MLFs) considering the reactive power. Generally, MLFs are represented as the sensitivity of transmission losses, which is computed from the change of the generation at reference bus by the change of the load at the arbitrary bus-i. The conventional evaluation method for MLFs uses the only H matrix, which is a part of jacobian matrix. Therefore, the MLFs computed by the existing method, don't consider the effect of the reactive power, although the transmission losses are a function of the reactive power as well as the active power. To compensate the limits of the existing method for evaluating MLFs, the power factor at the bus-i is introduced for reflecting the effect of the reactive power in the evaluation method of the MLFs. Also, MLFs calculated by the developed method are applied to energy spot markets to reflect the impacts of reactive power. This method is tested with the sample system with 5-bus, and analyzed how much MLFs have an effect on the bidding/offer price, market clearing price(MCP), and settlement in the competitive energy spot market. This paper compared the results of MLFs calculated by the existing and proposed method for the IEEE 14-bus system, and the KEPCO system.

A Research on Self-excitation and Power Factor Compensation of Induction Motor (유도전동기의 자기여자 및 역률보상에 대한 연구)

  • Kim, Jong-Gyeum
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.4
    • /
    • pp.236-240
    • /
    • 2014
  • Induction motor requires a rotating magnetic for rotation. Current required to generate the rotating magnetic field is magnetizing current. This magnetizing current is associated with the reactive power. This reactive power must be supplied from source side. Therefore, the power factor of the induction motor is low. So, the capacitor is installed on the motor terminals to compensate for the low power factor. Power supply company has recommended to maintain a high power factor to the customer. If the capacitor current is greater than the magnetizing current of the motor, there is a possibility that the self-excitation occurs. So it is necessary to calculate the optimal capacity capacitor current does not exceed the magnetizing current. In this study, we first compute the no-load current and the reactive power of the induction motor and then calculates the limit of the maximum power factor without causing self-excitation.

Optimum Operation of Power System Using Fuzzy Linear Programming (퍼지 선형계획법을 적용한 전력계통의 최적운용에 관한 연구)

  • 박성대;정재길;조양행
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.8 no.1
    • /
    • pp.37-45
    • /
    • 1994
  • A method of optimal active and reactive power control for economic operation in electrical power system is presented in this paper. The major features and techniques of this paper are as follows: 1) The method presented for obtaining the equivalent active power balance equation applying the sparse Jacobian matrix of power flow equation instead of using B constant as active power Balance equation considering transmission loss, and for determining directly optimal active power allocation without repeating calculations. 2) More reasonable and economic profit by minimizing total fuel cost of thermal power plants instead of using transmission loss as objective function of reactive Power control can be achieved. 3) Particularly in reactive power control, computing time can be considerably reduced by using Fuzzy Linear Programming instead of using conventional Linear Programming.

  • PDF

Transfer Capability Enhancement to Population Center Using VSC HVDC System (부하집중지로의 송전용량 증대를 위한 전압형 HVDC의 활용 방안)

  • Oh, Sea-Seung;Han, Byung-Moon;Cha, Jun-Min;Jang, Gil-Soo
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.6
    • /
    • pp.236-241
    • /
    • 2006
  • This paper presents a transfer capability enhancement process using VSC HVDC system which can control active power as well as reactive power. The transfer capability is constrained by stability like voltage stability as well as thermal rating of power system components. Transfer capability of the power system limited by these constraints may be enhanced by reactive power control ability and active power flow control ability of the VSC HVDC system. To enhance the transfer capability of the system using VSC HVDC, selection of the HVDC installation site is performed. In this work, power zones which consist of major power plants and their sinks are identified using power tracing and distribution factor. Alternative route of major AC transmission line in the power zone is identified as VSC HVDC system.

Development of Accurate Load Model for Detailed Power System Stability Analysis (전력계통 안정도 정밀해석을 위한 적정 부하모델 개발)

  • Park, S.W.;Kim, K.D.
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.201-205
    • /
    • 2001
  • This paper presents the load modeling process and bus load models for KEPCO power system. At first, load devices commonly used in KEPCO power systems were selected, and tested for measuring the voltage and frequency sensitivity of active and reactive power. From this test, about 40 voltage and frequency dependent load models have been obtained. The bus load composition rate for KEPCO power system has been determined using the various recent surveys and papers in order to develop the load model for a power system bus. To verify the accuracy of developed bus load models, the field test for measuring active and reactive power according to artificial variation of the bus voltage was performed at 8 substations for spring summer, autumn, winter cases. With data of this seasonal field test, more reliable bus load models for KEPCO power systems were developed.

  • PDF