• Title/Summary/Keyword: Activated-sludge

Search Result 786, Processing Time 0.024 seconds

Effect of 3,3',4',5-Tetrachlorosalicylanilide on Reduction of Excess Sludge and Nitrogen Removal in Biological Wastewater Treatment Process

  • Rho, Sang-Chul;Nam, Gil-Nam;Shin, Jee-Young;Jahng, Deok-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.7
    • /
    • pp.1183-1190
    • /
    • 2007
  • A metabolic uncoupler, 3,3',4',5-tetrachlorosalicylanilide (TCS), was used to reduce excess sludge production in biological wastewater treatment processes. Batch experiments confirmed that 0.4 mg/l of TCS reduced the aerobic growth yield of activated sludge by over 60%. However, the growth yield remained virtually constant even at the increased concentrations of TCS when cultivations were carried out under the anoxic condition. Reduction of sludge production yield was confirmed in a laboratory-scale anoxic-oxic process operated for 6 months. However, it was found that ammonia oxidation efficiency was reduced by as much as 77% in the presence of 0.8 mg/l of TCS in the batch culture. Similar results were also obtained through batch inhibition tests with activated sludges and by bioluminescence assays using a recombinant Nitrosomonas europaea (pMJ217). Because of this inhibitory effect of TCS on nitrification, the TCS-fed continuous system failed to remove ammonia in the influent. When TCS feeding was stopped, the nitrification yield of the process was resumed. Therefore, it seems to be necessary to assess the nitrogen content of wastewater if TCS is used for reducing sludge generation.

The evaluation of T-P removal and dewaterability under the operation change in KIDEA process (-기술정보- 연속유입 KIDEA에서 공정변화에 따른 인제거 및 탈수 함수율 상관관계)

  • Yeon, seung jun;Her, hee seung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.2
    • /
    • pp.179-182
    • /
    • 2008
  • The KIDEA process, occurred in single reactor, is operated by three consequential steps, i.e., aerobic, settling, and discharge while introducing wastewater into the bottom of reactor continuously. It could accomplish biological oxidation (BOD), nitrification, denitrification (T-N), phosphate removal (T-P), and solid separation (SS) through the operational mode mentioned. Especially, this system has removed the T-P by wasting certain amount of sludge at the end of aeration phase during 5~10 minutes and not returned the activated sludge into the reactor, that is, no RAS (Return Activated Sludge). All running mode and instrumentation were controlled by the PLC equipment automatically. In this study, therefore, we have evaluated T-P removal efficiency and moisture content (MC) performance under the different excess sludge wasting mode. T-P track study and MC with TS concentration were analyzed during aerobic and settling phase. It has revealed that there was no significant difference of released T-P concentration between the first case which waste the sludge at the end of aerobic phase (0.2mg/L) and the second case which waste the sludge at 40 min of settling phase (0.25mg/L). Also, dewatering duration and MC have decreased 1.7% when TS concentration was increased from 0.31% to 0.5% during aerobic condition. Hence, it has concluded the system performance was less influenced by the operation time change of PLC program.

Improvement of treatment efficiency for sanitary treatment facilities by process modifications (분뇨처리장의 공정개선에 의한 처리효율 향상에 관한 연구)

  • Lee, Chan Won;Kim, Seung Hyeon;Kim, Chang Su;Mun, Seong Won;Jeon, Hong Pyo;Yun, Jong Seop
    • Journal of Environmental Science International
    • /
    • v.13 no.6
    • /
    • pp.571-579
    • /
    • 2004
  • There is a need to improve the efficiency of the existing sanitary treatment facilities, because the effluent standard becomes more stricter and septic sludge increased. Thus, operating processes of sanitary treatment system in M city changed with installation of additional facilities. Process modifications were as follows: Dilution water was added to the next process after primary aeration tank. Some secondary sedimentation sludge was recycled to primary aerator so that most of the organics were stabilized in primary aeration tank under automatic control of dissolved oxygen. The line of effluent from dewatering process flowing to the activated sludge tank was changed to the primary aerator. The primary sedimentation sludge line was linked to a thickener. Polymer was added to the activated sludge tank. The effluent of primary aerator and aerobic digester was recycled from the 5th to the 1st sector. As consequencies of above process modifications, the improvement of removal efficiency was achieved as BOD 54%, COD 42%, SS 61%, T-N 39%, and T-P 12%, respectively.

Interpretation of Simultaneous Nitrification & Denitrification Reaction by Modifying Activated Sludge Models(ASMs) (활성슬러지 모델 수정을 통한 동시 질산화.탈질 반응 해석)

  • Kim, Hyo-Su;Kim, Ye-Jin;Lee, Sung-Hak;Moon, Tae-Sup;Choi, Jae-Hoon;Kim, Chang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.2
    • /
    • pp.199-206
    • /
    • 2008
  • Simultaneous nitrification and denitrification means that nitrification and denitrification occur concurrently in the same reaction vessel under low DO concentration. Some mathematical models developed to simulate simultaneous nitrification and denitrification reaction, but they have the complex model structures or have limitations of model application. To solve these problems, if possible that predict the behavior of simultaneous nitrification and denitrification reaction by activated sludge model, structures of the model is less complex than previous models and applies the various operation conditions. But original activated sludge models have difficulties in representing the denitrification reaction under aerobic condition. So the aim of this study is to interpret simultaneous nitrification and denitrification reaction by modifying activated sludge model. Original activated sludge model No.1(ASM1) was selected and modified. The simulation result in modified ASM1 predicted appropriately for the measured data. This indicates the structures of ASM1 are properly improved for interpretation of simultaneous nitrification and denitrification reaction.

Estimation of Acidic Wastewater Toxicity on the Activated Sludge (활성슬러지에 미치는 산폐수의 독성도 예측)

  • Choi, Kwang-Soo;Ko, Joo-Hyung;Jang, Won-Ho;Kim, Chang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.12
    • /
    • pp.2175-2185
    • /
    • 2000
  • Respiration rate should be a reasonable state variable for the activated sludge and could be used to simulate the performance of the activated sludge process. Toxic materials are classified into three groups, competitive, noncompetitive and uncompetitive. They increase/decrease the half saturation coefficient or specific growth rate. that means decreasing of the substrate removal capacity. In this research, a pilot-scale activated sludge process was operated under extended aeration method, and a representative noncompetitive inhibitor, acidic wastewater was applied to establish a respirometry-based toxicity model. Using this model. the correlation coefficient between measured and calculated respiration rate was 0.96 when acidic wastewater(pH 3.9~5.5) was introduced continuously to the aeration tank. Even though respiration rate was decreased by toxic effect of acidic wastewater, effluent substrate concentration represented to COD was deteriorated just a little bit. It might be caused by the low ratio of readily biodegradable substrate in the input substrate. Reduction of respiration rate by decreasing of input substrate concentration was much lower than that by acidic wastewater, and hence it was estimated that the possibility of false toxic alarm caused by decreasing of substrate concentration should be low.

  • PDF

A Study on Volume Reduction of Waste Sludge by Aerobic Thermophilic Bacteria (호기성 호열미생물에 의한 하수슬러지 감량화 효율에 관한 연구)

  • Bae, Yoon-Sun;Kim, Soon-Young;Nam, Duck-Hyun;Park, Chul-Hwi;Kim, Jin-Su;Takada, Kazu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.4
    • /
    • pp.497-505
    • /
    • 2005
  • Domestic Sewage Treatment Plants are mostly based on biological treatment, in which large amounts of excess sludge are generated and occupy about 40 ~ 60% of the total sewage treatment costs. Several methods for sludge treatment has been so far reported as upgrading biodegradation of sludge; heat treatment, chemical treatment, including thermo-alkali and ozone, mechanical treatment including ultrasonic pulverization. But, it has a limitation in case of reducing the amount of excess sludge which are already producted. In this study, application of excess sludge reduction process using thermophilic aerobic bacteria for activated sludge was examined. The research was carried out two different stage. one for a biological wastewater treatment and the other for a thermophilic aerobic solubilization of the waste sludge. A portion of excess sludge from the wastewater treatment step was into the thermophilic aerobic sludge solubilization reactor, in which the injected sludge was solubilized by thermophilic aerobic bacteria. The solubilized sludge was returned to the aeration tank in the wastewater treatment step for its further degradation. Sludge solubilization reactor was operated at $63{\pm}2^{\circ}C$ with hydraulic retention time(HRT) of 1.5 ~ 1.7 day. Control group was operated with activated sludge process(AS) and experiment group was operated with three conditions(RUN 1, RUN 2, RUN3). RUN 1 was operated with AS without sludge solubilization reactor. RUN 2 were operated with AS with sludge solubilization reactor to examine correlation between sludge circulation ratio and sludge reduction ratio by setting up sludge circulation ratio to 3. RUN 3 was operated with sludge circulation ratio of 3 and MLSS concentration of 1,700~2,000mg/L to examine optimum operation condition. The quantity of excess sludge production was reduced sharply and in operation of RUN 3, sludge The quantity of excess sludge production was reduced sharply and in operation of RUN 3, sludge solubilization ratio and sludge reduction ratio were 53. 7%, 95.2% respectively. After steady state operation, average concentration of TBOD, SBOD, $TCOD_{Cr}$, $SCOD_{Cr}$, TSS, VSS, T-N, T-P of effluent were 4.5, 1.7, 27 .8, 13.8, 8.1, 6.2, 15.1, 1.8mg/L in the control group and were 5.6, 2.0, 28.6, 19.1, 9.7, 7.2, 16.1, 2.0mg/L in the experimental group respectively. They were appropriate to effluent standard of Sewage Treatment Plants.

2,4-D Biodegradation Using Microorganism Extracted From Soil (1) (토양미생물에 의한 2, 4-D 분해에 관한 연구 (1))

  • Choung, Youn-kyoo;Lee, Byung chan;Kim, Jin-wook
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.4
    • /
    • pp.45-53
    • /
    • 1999
  • The microbial organisms named "Pseudomonas sp. LK-14" were isolated from farm land and shallow river sediment, activated, augmented and identified; which were using 2,4-D (2,4-Dichlorophenoxyacetic acid) as a sole carbon source and energy source. 2,4-D removal efficiency of LK-14 with 2,4-D sole carbon source (reactor S) were higher than that of Activated Sludge with 2,4-D sole carbon source (reactor A). Dynamic bioligical reaction kinetic parameters (sole carbon source was 2,4-D) obtained from batch reactor experiments were ${\mu}_{max}$ $0.105hr^{-1}$, $K_{s,24D}$ 15.64mg/L, $K_{i,24D}$ $1.94h^{r-1}$, $Y_{24D}$ 0.39 for LK-14 and ${\mu}_{max}$ $0.008hr^{-1}$, $K_{s,24D}$ 26.95mg/L, $K_{i,24D}$ $1.75hr^{-1}$, $Y_{24D}$ 0.10 for Activated Sludge. Using these parameters, we could predict the behaviors of 2,4-D substrate utilized by LK-14 and Activated Sludge in batch reactors. The kinetic parameters are enable to predict the 2,4-D substrate and microbial population behavior entering into wastewater treatment plants by using unsteady states dynamic simulation modeling technique.

  • PDF

Changes of physico-chemical properties of the activated sludges with anaerobic storage time (혐기화 시간에 따른 활성슬러지의 물리ㆍ화학적 특성변화)

  • 이창한;나영수;김도한;이송우;송승구
    • Journal of Environmental Science International
    • /
    • v.11 no.4
    • /
    • pp.339-346
    • /
    • 2002
  • Physico-chemical properties of the activated sludges(Suyoung and Changlim treatment plant), such as SVI(sludge volume index), absorbance, specific surface area, and specific resistance using Buchener funnel test were investigated with changing anaerobic storage time. This experimental condition was found that it was possible to estimate a linear relationship between their parameters such as specific surface area specific resistance, and sludge volume index(SVI). The specific surface area and the specific resistance to filtration of the activated sludges of Suyoung and Changlim treatment plant were found as 123.6~136.6$m^2$/gDS and 41.5~44.9$m^2$/gDS(dry solid), and 1.09$\times$10$^{14}$ ~5.48$\times$10$_{14}$ m/kg and 1.05$\times$10$^{14}$ ~2.48$\times$10$^{14}$ m/kg, respectively. The results gave a good linear relationship between the specific surface area and the specific resistance, r=2.25$\times$10$^{12}$ s-8.10$\times$10$^{13}$ ($R^2$=0.8885) at Suyoung treatment plant and r=1.26$\times$10$^{13}$ s-4.75$\times$10$^{14}$ ($R^2$=0.8756) at Changlim treatment plant.

Studies on the Activated Sludge of Food Industries for Animal Feed -Part 1. Chemical composition of Brewery's Activated Sludge- (식품공장 폐수 활성오니(活性汚泥)의 사료화에 관한 연구 -제1보 : 맥주공장 오니(汚泥)의 화학조성에 관하여-)

  • Ki, Woo-Kyung;Park, Taek-Kyu
    • Korean Journal of Food Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.291-294
    • /
    • 1977
  • Some chemical analysis of brewery's activated sludge were carried out in order to utilize it for animal feed. And results obtained were as follows. 1. Brewery's sludge, sun-dried for 3 days, contained 15.4% of water, 40.47 of crude protein, 4.02% of crude fiber, 13.3% crude ash and 19.4% nitrogen-free extract. 2. Total amino acid content of the brewery's sludge was 38% of its dry basis. The amounts, of all essential amino acids contained except tryptophan was enough for chicken growing and, especially, among the essential amino acids, the contents of leucine, isoleucine, phenylalanine, tyrosine, glycine and serine were two or three times as much as its need. 3. Other minerals contents except Magnesium and Cupper, were considerably low for animal feed.

  • PDF

Waste Activated Sludge for Start-up Seed of Thermophilic Anaerobic Digestion (고온 혐기성 소화공정의 start-up seed로서의 호기성 폐 활성슬러지 이용가능성 연구)

  • Kim, Moonil;Shin, Kyuchul
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.5
    • /
    • pp.490-495
    • /
    • 2005
  • Since there are very limited numbers of thermophilic anaerobic digesters being operated, it is often difficult to start up a new one using sludge from an existing reactor as a seed. However, for obvious reasons it seems few attempts have been made to compare the start-up performance of thermophilic anaerobic digestion using different sources of seed sludges. The purpose of this study was to evaluate the start-up performance of anaerobic digestion using aerobic Waste Activated Sludge (WAS) from a plant and mesophilic Anaerobic Digested Sludge (ADS) as the seed source at both mesophilic ($35^{\circ}C$) and thermophilic ($55^{\circ}C$) temperatures. In this study, two experiments were conducted. First, thermophilic anaerobic reactors were seeded with WAS (VSS = 4,400 mg/L) and ADS (VSS = 14,500 mg/L) to investigate start-up performance with a feed of acetate as well as propionate. The results show that WAS started to produce $CH_4$ soon after acetate feeding without a lag time, while ADS had a lag time of 10 days. When the feed was changed to propionate, WAS removed propionate down to below the detection limit of 10 mg/L, while ADS removed little propionate and produced little $CH_4$. Second, in order to further compare the methanogenic activity of WAS and ADS, both mesophilic and thermophilic reactors were operated. WAS acclimated to anaerobic conditions shortly and after acclimating it produced more $CH_4$ than ADS. WAS at mesophilic temperature biodegraded acetate at the same rate as for thermophilic. However WAS at mesophilic temperature biodegraded propionate at a much faster rate than at thermophilic. WAS as the seed source of anaerobic digestion resulted in much better performance than ADS at both mesophilic and thermophilic temperatures for both acetate and propionate metabolism.