• Title/Summary/Keyword: Activated material

Search Result 746, Processing Time 0.03 seconds

The Toxin Purification and Isolation Identification of Meloidogyne hapla Toxicity Bacteria (Meloidogyne hapla 독성세균의 분리 동정 및 독성물질의 정제)

  • 이광배
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.2
    • /
    • pp.32-39
    • /
    • 1999
  • The following is experimental result of selecting soil bacteria showing toxicity against Root-knot nematode (Meloidogyne hapla). Out of 286 strains isolated from soil, one(NC67) showing toxicity against M.hapla is selected The selected strain(NC67) is identified of B. thuringiensis subsp. indiana. It proved out that the toxic maerial against M. hapla produce by NC67 strain is an exotoxin. The result of examining the existence of the extercellular toxicity product by the toxic strain(NC67) by usign activated carbon column chromatography, Dowex 50W column chromatography and TLC of silical gel etc. proved out that it is a single material.

  • PDF

Optimization of down stream plasma ashing process (감광제 건식제거공정의 최적화)

  • 박세근;이종근
    • Electrical & Electronic Materials
    • /
    • v.9 no.9
    • /
    • pp.918-924
    • /
    • 1996
  • A downstream oxygen plasma is generated by capacitively coupled RF power and applied to photoresist stripping. Stripping rate (ashing rate) is measured in terms of RF power, chamber pressure, oxygen flow rate and temperature. Ashing reaction is thermally activated and depends on oxygen radical density. The ashing process is optimized to have the high ashing rate, good uniformity and minimal plasma damage using a statistical method.

  • PDF

Optimization of Disk Sorptive Extraction Based on Monolithic Material for the Determination of Aroma Compounds from Lantana camara L. by Gas Chromatography-Mass Spectrometry

  • Jang, Hye-Jin;Son, Hyun-Hwa;Lee, Dong-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4275-4280
    • /
    • 2011
  • Present study describes the optimization of disk type sorptive extraction using monolithic material (Mono Trap) for the analysis of volatile aroma compounds from Lantana camara L. in combination with gas chromatography/mass spectrometry (GC/MS). Monolithic material sorptive extraction (MMSE) is a new sampling technique using a monolithic hybrid adsorptive disk (O.D. 10 mm, 1 mm thickness) made of high purity silica and activated carbon having a large surface area chemically bonded with octadecyl silane (ODS). The experimental parameters that may influence the MMSE efficiency have been optimized. Linearity, accuracy, precision and detection limits were evaluated to assess the performance of the proposed method. The method was validated with real plant samples of Lantana camara L. Twenty eight compounds including the main representative compounds of ${\alpha}$-curcumene and ${\beta}$-caryophyllene were found in analyzed samples. Results proved that proposed method could be used as a good alternative for the analysis for such volatile aroma compounds in plant samples.

Kinetics of Nitric Oxide Reduction with Alkali Metal and Alkali Earth Metal Impregnated Bamboo Activated Carbon (알칼리금속과 알칼리 토금속 촉매 담지 대나무 활성탄의 NO 가스 반응 특성)

  • Bak, Young-Cheol;Choi, Joo-Hong
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.671-677
    • /
    • 2016
  • The impregnated alkali metal (Na, K), and the alkali earth metal (Ca, Mg) activated carbons were produced from the bamboo activated carbon by soaking method of alkali metals and alkali earth metals solution. The carbonization and activation of raw material was conducted at $900^{\circ}C$. The specific surface area and the pore size distribution of the prepared activated carbons were measured. Also, NO and activated carbon reaction were conducted in a thermogravimetric analyzer in order to use for de-NOx agents of the used activated carbon. Carbon-NO reactions were carried out in the nonisothermal condition (the reaction temperature $20{\sim}850^{\circ}C$, NO 1 kPa) and the isothermal condition (the reaction temperature 600, 650, 700, 750, 800, $850^{\circ}C$, NO 0.1~1.8 kPa). As results, the specific volume and the surface area of the impregnated alkali bamboo activated carbons were decreased with increasing amounts of the alkali. In the NO reaction, the reaction rate of the impregnated alkali bamboo activated carbons was promoted to compare with that of the bamboo activated carbon [BA] in the order of BA(Ca)> BA(Na)> BA(K)> BA(Mg) > BA. Measured the reaction orders of NO concentration and the activation energy were 0.76[BA], 0.63[BA(Na)], 0.77[BA(K)], 0.42[BA(Ca)], 0.30 [BA(Mg)], and 82.87 kJ/mol[BA], 37.85 kJ/mol[BA(Na)], 69.98 kJ/mol[BA(K)], 33.43 kJ/mol[BA(Ca)], 88.90 kJ/mol [BA(Mg)], respectively.

Preparation of Nanoporous Activated Carbon with Sulfuric Acid Lignin and Its Application as a Biosorbent (황산 가수분해 잔사 리그닌을 이용한 나노 세공 활성탄 제조 및 친환경 흡착제로의 활용 가능성 평가)

  • Hwang, Hyewon;Choi, Joon Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.1
    • /
    • pp.17-28
    • /
    • 2018
  • In this study, catalytic activation using sulfuric acid lignin (SAL), the condensed solid by-product from saccharification process, with potassium hydroxide at $750^{\circ}C$ for 1 h in order to investigate its potential to nanoporous carbon In this study, catalytic activation using sulfuric acid lignin (SAL), the condensed solid by-product from saccharification process, with potassium hydroxide at $750^{\circ}C$ for 1 h in order to investigate its potential to nanoporous carbon material. Comparison study was also conducted by production of activated carbon from coconut shell (CCNS), Pinus, and Avicel, and each activated carbon was characterized by chemical composition, Raman spectroscopy, SEM analysis, and BET analysis. The amount of solid residue after thermogravimetric analysis of biomass samples at the final temperature of $750^{\circ}C$ was SAL > CCNS > Pinus > Avicel, which was the same as the order of activated carbon yields after catalytic activation. Specifically, SAL-derived activated carbon showed the highest value of carbon content (91.0%) and $I_d/I_g$ peak ratio (4.2), indicating that amorphous large aromatic structure layer was formed with high carbon fixation. In addition, the largest changes was observed in SAL with the maximum BET specific surface area and pore volume of $2341m^2/g$ and $1.270cm^3/g$, respectively. Furthermore, the adsorption test for three kinds of organic pollutants (phenol, 2,4-Dichlorophenoxyacetic acid, and carbofuran) were conducted, and an excellent adsorption capacity more than 90 mg/g for all activated carbon was determined using 100 ppm of the standard solution. Therefore, SAL, a condensed structure, can be used not only as a nanoporous carbon material with high specific surface area but also as a biosorbent applied to a carbon filter for remediation of organic pollutants in future.

The Expression of Texture Applying the Cotton Fabrics of Woolsmok Technique - Comparison of the Works Using the Rolltechnique and the Washing Machine - (울스모크(Woolsmok)기법에 의한 면직물에 응용된 질감표현 - 롤테크닉과 세탁기 작업에 의한 비교 -)

  • Oh, Yean-Ok
    • Fashion & Textile Research Journal
    • /
    • v.6 no.2
    • /
    • pp.163-168
    • /
    • 2004
  • The domestic textile industry is currently making an active effort to present high value-added materials that can respond immediately to the wants and needs of consumers sensitive to the of originality of design and emotionally appealing fashion materials. This paper attempted to present the creative development of materials in the contemporary clothing culture in which consumers' needs are individualized and differentiated and the cycle of life in fashion materials is getting shorter. To be specific, the paper presented the texture of peculiar expression to diverse cotton materials using the Woolsmok technique in the processing of felt. The chosen Merino wool was felted to 8 kinds of cotton with different density and structure. The touch, texture, visibility and complex susceptibilities of new materials were presented as different materials of cotton and wool were transformed into one material. In felting cotton fiber through wool, the transformation of diverse textures was presented and compared in the method using the washing machine in an attempt to enhance the efficiency of the traditional craft technique and work. This study proposed the possibility of placing the new material made up of cotton and wool beyond the range of functionality of each simple material, activating it as the peculiar material and expanding it to the range of its use as fashion material in the clothing industry. It is expected that this material will become competitive material at home and abroad by being activated as the clothing material of artistry, workability and marketability that can satisfy the tastes of consumers who call for high quality and diversification.

하이브리드커패시터용 활성탄전극의 리튬도핑에 따른 전기화학적 거동

  • Jo, Min-Yeong;No, Gwang-Cheol;Lee, Jae-Won;Park, Seon-Min;Lee, Dong-Ryeol;Han, Sang-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.266-266
    • /
    • 2009
  • For the development of hybrid supercapacitor, increasing energy density is one of the most crucial matters. Since the energy density is the function of capacitance and voltage, it is necessary to enhance energy density for increasing capacitance or voltage. For the high working voltage, it was to enforce Li ion free-doping to activated carbon. As a result, initial capacitance has increased by 11% than raw cell. But capacitance has decreased by Li ion re-solution to electrolyte for increase the number of cycle.

  • PDF

Current-Voltage Characterization of Silicon Quantum Dot Solar Cells

  • Kim, Dong-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.4
    • /
    • pp.143-145
    • /
    • 2009
  • The electrical and photovoltaic properties of single junction silicon quantum dot solar cells are investigated. A prototype solar cell with an effective area of 4.7 $mm^2$ showed an open circuit voltage of 394 mV and short circuit current density of 0.062 $mA/cm^2$. A diode model with series and shunt resistances has been applied to characterize the dark current-voltage data. The photocurrent of the quantum-dot solar cell was found to be strongly dependent on the applied voltage bias, which can be understood by consideration of the conduction mechanism of the activated carriers in the quantum dot imbedded material.

제지산업의 지속가능한 처리공정을 위한 제지슬러지 재활용 기술

  • Im, Mi-Hui;Lee, Jong-Gyu;Nam, Seong-Yeong;An, Ji-Hwan
    • Ceramist
    • /
    • v.14 no.2
    • /
    • pp.7-14
    • /
    • 2011
  • This paper has investigated physicochemical properties and conventional and environmental-friendly treatment methods of paper mill sludge to emphasize the importance and necessity of the sludge recycling. The paper mill sludge generally shows high contents of calcium and water, and is mostly discharged by landfill after incineration process rather than being recycled due to technical or economical problems. In recent years, however, several possible methods for recycling the paper mill sludge have been suggested for its sustainable process as follows; compost, raw material for the construction and paper industry, new energy source for reducing fossil fuel use and raw material of activated carbon for treating paper mill wastewater. Thus the authors suggest that practical recycling technologies of the paper mill sludge must be developed for substantiality in the paper industry through comprehending physicochemical compositions and generation status of the sludge and actively performing various related studies. Furthermore, this investigation could be used as preliminary information for the study on recycled paper development using paper mill sludge incineration ash.

  • PDF

PEDOT:PSS/Single Wall Carbon Nanotube Composite Nanoparticles as an Additive for Electric-double Layer Capacitor

  • Park, Jong Hyeok;Lee, Sang Young;Kim, Jong Hun;Ahn, Sunho
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.3
    • /
    • pp.143-148
    • /
    • 2012
  • The unique effects of highly conductive conducting polymer/SWNT (single walled carbon nanotube) composite nanoparticles in electric double layer capacitors are studied for the enhancement of the adhesive properties, specific capacitance and power characteristics of the electrode. Because the conducting polymer/SWNT composite material, which is believed to act as a polymer binder, an active material for charge storage and a conducting agent, is well distributed on the activated carbon, greatly enhanced adhesion properties, cell capacitance and power characteristics were obtained.