• Title/Summary/Keyword: Activated Carbons

Search Result 293, Processing Time 0.042 seconds

Review on hazardous microcystins originating from harmful cyanobacteria and corresponding eliminating methods (유해 남세균 유래 마이크로시스틴의 위해성과 제거 방안 고찰)

  • Sok Kim;Yoon-E Choi
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.4
    • /
    • pp.370-385
    • /
    • 2023
  • Cyanobacterial harmful algal blooms (Cyano-HABs) are an international environmental problem that negatively affects the ecosystem as well as the safety of water resources by discharging cyanotoxins. In particular, the discharge of microcystins (MCs), a highly toxic substance, has been studied most actively, and various water treatment methods have been proposed for this purpose. In this paper, we reviewed adsorption technology, which is recognized as the most feasible, economical, and efficient method among suggested treatment methods for removing MCs. Activated carbons (AC) are widely used adsorbents for MCs removal, and excellent MCs adsorption performance has been reported. Research on alternative adsorption materials for AC such as biochar and biosorbents has been conducted, however, their performance was lower compared to activated carbon. The impacts of adsorbent properties(characteristics of pore surface chemistry) and environmental factors (solution pH, temperature, natural organic matter, and ionic strength) on the MCs adsorption performance were also discussed. In addition, toward effective control of MCs, the possibility of the direct removal of harmful cyanobacteria as well as the removal of dissolved MCs using adsorption strategy was examined. However, to fully utilize the adsorption for the removal of MCs, the application and optimization under actual environmental conditions are still required, thereby meeting the environmental and economic standards. From this study, crucial insights could be provided for the development and selection of effective adsorbent and subsequent adsorption processes for the removal of MCs from water resources.

Characteristics on Chemical Activation and VOCs Adsorption of Activated Carbon according to Mixing Ratio of Anthracite and Lignite (활성탄 제조시 유·무연탄 혼합에 따른 화학적 활성화 및 휘발성유기화합물 흡착 특성)

  • Cho, Joon-Hyung;Kang, Sung-Kyu;Kang, Min-Kyoung;Cho, Kuk;Oh, Kwang-Joong
    • Clean Technology
    • /
    • v.23 no.4
    • /
    • pp.364-377
    • /
    • 2017
  • In this study, to improve the low surface area of domestic anthracite as raw materials of activated carbon, characteristics on chemical activation and VOCs adsorption of activated carbon according to mixing ratio of anthracite and lignite. For these, properties of raw materials, parameter characteristics of preparation processes for activated carbon, and VOCs adsorption characteristic of the prepared activated carbon are analyzed. The experimental results showed that, the domestic anthracite had disadvantages of high contents for ash and lead, arsenic, which were exceeded for the heavy metal limits, in the properties of raw materials. To improve these diadvantages, using the mixing ratio of anthracite and lignite, and the optimum conditions for pretreatment, activation, washing, and pellitization process, the activated carbon had a range of BET (Brunauer-Emmett-Teller) surface area of $1,154{\sim}1,420m^2g^{-1}$ with mesopore development and hydrophobic surface property. The carbons were satisfied with the quality standard for granular activated carbon, and had similar physicochemical properties with the commercial activated carbon. The minimum mixing condition for commercial VOCs activated carbon performance must have the caloric value of above $5,640kcal\;kg^{-1}$, and the carbon had higher adsorption capacity with order of xylene > toluene > benzene according to more higher molcular weight and hydrophobic property.

Enhancement of Ammonia Adsorption Performance by Impregnation of Metal Chlorides on Surface-Modified Activated Carbon (표면 개질 활성탄 위 금속 염화물의 첨착에 의한 암모니아 흡착 성능의 향상)

  • Song, Kang;Lim, Jeong-Hyeon;Kim, Cheol-Gyu;Park, Cheon-Sang;Kim, Young-Ho
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.671-678
    • /
    • 2021
  • Effects of nitric acid treatment of an activated carbon and impregnation of metal chlorides on the activated carbon were investigated to improve ammonia adsorption performance. It was confirmed that functional groups such as hydroxyl and carboxyl groups were introduced onto a surface of the activated carbon with nitric acid treatment. Then, each metal chloride (NiCl2, MgCl2, CuCl2, MnCl2 or CoCl2) was impregnated onto the surface-modified activated carbon using an ultrasonic impregnation method. The physicochemical properties and ammonia adsorption performance of various impregnated activated carbons were observed. Metal chlorides were well dispersed by sonication and evenly distributed on the surface of the activated carbon. Despite the reduced specific surface area and pore volume, the surface-modified activated carbon impregnated with metal chlorides exhibited excellent ammonia adsorption performance. In particular, HNO3-NiCl2 AC prepared by impregnating NiCl2 showed the best ammonia adsorption capacity of 3.736 mmol·g-1, which was improved by about 57 times compared to that of an untreated activated carbon (0.066 mmol·g-1).

Adsorption Characteristics of Functionalized Activated Carbon for High Temperature CO2 Capture (고온 이산화탄소 포집을 위한 기능성 활성탄의 흡착특성)

  • Choi, Sung-Woo;Lee, Cheol-Gyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.3
    • /
    • pp.175-181
    • /
    • 2015
  • Activated carbon impregnated with polyethyleneimine (PEI) was evaluated as a functionalized adsorbent for $CO_2$ capture. The $CO_2$ adsorption characteristics of the adsorbents was undertaken using GC/TCD, BET surface area and FT-IR. A series of adsorbents were synthesized by impregnating 10, 30, 50 wt% of PEI on activated carbons and were investigated $CO_2$ adsorption capacity at high and low adsorption temperature. The $CO_2$ adsorption capacity at $20^{\circ}C$ and $100^{\circ}C$ was as follow: AC > PEI(10)-AC > PEI(30)-AC > PEI(50)-AC at $20^{\circ}C$ and PEI(10)-AC > PEI(30)-AC > PEI(50)-AC > AC at $100^{\circ}C$. Adsorption capacities of amine functionalized AC was lager than virgin AC at high temperature due to chemisorption by amino-group content. From the results, the PEI(10)-AC showed one of the most promising adsorbents for $CO_2$ capture from flue gas at high temperature.

Removal of Geosmin and 2-MIB using Biological Activated Carbon Process (생물활성탄(BAC) 공정을 이용한 이취미물질(geosmin, 2-MIB)의 생분해 특성평가)

  • Son, Dong-Min;Son, Hee-Jong;Lee, Hwa-Ja;Kang, Lim-Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.2
    • /
    • pp.189-198
    • /
    • 2009
  • Tastes and odor in water caused by geosmin and 2-MIB are the major customer complaints for water utilities. Therefore, control of geosmin and 2-MIB is a worldwide concern. In this study, the effects of biofilter media type (three different activated carbons and anthracite), empty bed contact time (EBCT) and temperature on the removal of geosmin and 2-MIB in BAC filters were investigated. Experiments were conducted at three different water temperatures (5, 15 and $25^{\circ}C$) and four different EBCTs (5, 10, 15, and 20 min). The experimental results indicated that the coal based BAC retained more bacterial biomass on the surface of the activated carbon than the other BACs, and increasing EBCT or increasing water temperature also increased the geosmin and 2-MIB removal in BAC filters. To achieve above 50% of removal efficiency for geosmin and 2-MIB in a BAC filter, above 10 min EBCT at $5^{\circ}C$ and 5 min EBCT at above $15^{\circ}C$ were required. The kinetic analysis for the biodegradation of geosmin and 2-MIB indicated a first-order reaction rate at various water temperatures. Data obtained from the BAC filters at various temperatures were also used to evaluate pseudo first-order rate constants for geosmin and 2-MIB. The half-lives evaluated at 5, 15, and $25^{\circ}C$ for geosmin and 2-MIB ranged from 2.39 to 10.31 min and 3.35 to 13.97 min, respectively, which can be used to assist water utilities in designing and operating BAC system.

Effects of chemical modification on surface characteristics and 2,4-dichlorophenol adsorption on activated carbon (활성탄 개질에 따른 표면 특성 변화가 2,4-dichlorophenol 흡착성능에 미치는 영향)

  • An, Sun-Kyung;Song, Won-Jung;Park, Young-Min;Yang, Hyeon-A;Kweon, Ji-Hyang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.6
    • /
    • pp.425-435
    • /
    • 2020
  • Numerous chemical modifications on activated carbon such as acidic conditioning, thermal treatment and metal impregnation have been investigated to enhance adsorption capacities of micropollutants in water treatment plants. In this study, chemical modification including acidic, alkaline treatment, and iron-impregnation was evaluated for adsorption of 2,4-dichlorophenol (2,4-DCP). For Fe-impregnation, three concentrations of ferric chloride solutions, i.e., 0.2 M, 0.4 M, and 0.8 M, were used and ion-exchange (MIX) of iron and subsequent thermal treatment (MTH) were also applied. Surface properties of the modified carbons were analyzed by active surface area, pore volume, three-dimensional images, and chemical characteristics. The acidic and alkaline treatment changed the pore structures but yielded little improvement of adsorption capacities. As Fe concentrations were increased during impregnation, the active adsorption areas were decreased and the compositional ratios of Fe were increased. Adsorption capacities of modified ACs were evaluated using Langmuir isotherm. The MIX modification was not efficient to enhance 2,4-DCP adsorption and the MES treatment showed increases in adsorption capacities of 2,4-DCP, compared to the original activated carbon. These results implied a possibility of chemical impregnation modification for improvement of adsorption of 2,4-DCP, if a proper modification procedure is sought.

Adsorption Behavior of PAHs in Cigarette Smoke on Glass Beads - Effect of Plasma Polymerization Coating (담배 연기 내 PAH의 유리입자에 대한 흡착거동 - 플라즈마 고분자 중합 코팅 영향)

  • Basarir, Fevzihan;Rhee, Moon-Soo;Lee, Young-Taek;Yoon, Tae-Ho
    • Journal of Adhesion and Interface
    • /
    • v.11 no.4
    • /
    • pp.137-143
    • /
    • 2010
  • Glass beads (GBs) were modified via plasma polymerization coatings in order to enhance the adsorption of polycyclic aromatic hydrocarbons (PAHs) in cigarette smoke and activated carbons (ACs) were also utilized for comparative purposes. First, GBs and ACs were subjected to surface modification via plasma polymerization coating of acrylic acid, acrylonitrile, 1,3-diaminopropane, thiophene or dimethylphosphite with a RF plasma (13.56 MHz) generator. Next, their adsorption behavior was evaluated with a home-made 4-port smoking machine by collecting the total particulate matters (TPMs) on a Cambridge filter pad, followed by the separation of PAHs via solid phase extraction and analysis with GC/MS. Finally, the plasma polymerization coatings were analyzed by FT-IR/ATR to elucidate the adsorption mechanism, while the topology of the modified GBs and ACs were studied by FE-SEM.

Biofilms and their Activity in Granular Activated Carbons Established in a Drinking Water Treatment Plant (정수장 활성탄 여과지의 생물막과 그 활성도)

  • Lee, Ji-Young;Kim, Se-Jun;Chung, Ik-Sang;Joh, Gyeong-Je
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.6
    • /
    • pp.661-674
    • /
    • 2010
  • Bacterial biomass and its activity were measured in two kinds of granular activated carbon (GAC), the experimental and existing biofiltration system in a drinking water plant. The bacterial biomass was around 210 to 250 nmol P/g WW with phospholipid concentration at acclimation of ozonation treatment. The phospholipid biomass shows more or less a declining gradient along filter depth and no clear seasonality in its values. On the other hand, the microbial activity of [$^3H$]-thymidine and [$^{14}C$]-acetate incorporation within cells increased significantly along the filter depth, showing the difference of three fold between the upper and bottom layer. These factors support the different microbial composition or metabolic activity along the depth of GAC column. Turnover rates, the rate of bacterial biomass and production of biofilm, ranged from 0.26 /hr to 0.37 /hr, indicating a highly rapid recovery itself at amature state. In the non-ozonation treatment, the bacterial biomass was lower than in the ozonation and biological activity also declined towards the filter depth. The biomass levels during cessation of ozonation in the existing GAC filters were 68% of the actively ozonated state.

The Effect of Residual Water on the Adsorption Process of Carbon Tetrachloride by Activated Carbon Pellet (활성탄에 의한 사염화탄소 흡착공정에서 잔존수분의 영향)

  • Jeong, Sung Jun;Lee, Dae Lo;Kim, Tae Young;Kim, Jin Hwan;Kim, Seung Jai;Cho, Sung Young
    • Korean Chemical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.694-702
    • /
    • 2002
  • Activated carbons have been used as adsorbents in various industrial application, such as solvent recovery, gas separation, deodorization, and catalysts. In this study, the effects of residual water on the activated carbon adsorbent surface on the adsorption capacity of $CCl_4$ were investigated. Adsorption behavior in a fixed bed was studied in terms of feed concentration, flow rate, breakthrough curve and adsorption capacity for $CCl_4$. Desorption characteristics of residual water on activated carbon were also studied. The water contents of the activated carbon were varied in the range of 0-20%(w/w) and all experiments were performed at 298.15 K. The adsorption equilibrium data $CCl_4$ on the activated carbon were well expressed by Langmuir isotherm. The adsorption capacity of $CCl_4$ decreased with increasing residual water content. Desorption of residual water in activated carbon decreased expotentially with $CCl_4$ adsorption. The obtained breakthrough curves using LDF(linear driving force) model represented our experimental data.

Adsorption Characteristics of Three-components Volatile Organic Compounds on Activated Carbonaceous Adsorbents (탄소흡착제에 의한 삼성분계 휘발성 유기화합물의 흡착특성)

  • Son, Mi Sook;Kim, Sang Do;Woo, Kwang Jae;Park, Hee jae;Seo, Man cheol;Lee, Si hun;Ryu, Seung Kon
    • Korean Chemical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.669-675
    • /
    • 2006
  • Toluene of aromatic compounds, MEK of ketones and IPA of alcohols were extremely used as VOCs (Volatile Organic Compounds) on the getting into step with industrial process. The adsorption characteristics of three component solvent vapors (Toluene-MEK-IPA) on the activated carbonaceous adsorbents such as AC, ACF and AC+ACF were investigated in a stainless steel fixed bed adsorption experimental apparatus in order to identify those carbons for eliminating and recovering solvent vapors from industrial emission sources. The used activated carbonaceous adsorbents were pelletized commercial activated carbon and activated carbon fiber. The breakthrough curves and adsorption capacity have been obtained at atmospheric pressure in a adsorption fixed bed. It has been found that non-polar and larger molecules have been adsorbed better than polar and smaller molecules. Especially, alcohols and ketones were poorly adsorbed due to competitive adsorbability in ternary mixture system. However, it could be overcome by employment of activated carbonaceous adsorbent which have different porosity distribution appropriately.