DOI QR코드

DOI QR Code

Adsorption Characteristics of Functionalized Activated Carbon for High Temperature CO2 Capture

고온 이산화탄소 포집을 위한 기능성 활성탄의 흡착특성

  • Choi, Sung-Woo (Department of Environmental Science and Engineering, Keimyung University) ;
  • Lee, Cheol-Gyu (Department of Environmental Science and Engineering, Keimyung University)
  • Received : 2014.11.06
  • Accepted : 2015.03.31
  • Published : 2015.03.31

Abstract

Activated carbon impregnated with polyethyleneimine (PEI) was evaluated as a functionalized adsorbent for $CO_2$ capture. The $CO_2$ adsorption characteristics of the adsorbents was undertaken using GC/TCD, BET surface area and FT-IR. A series of adsorbents were synthesized by impregnating 10, 30, 50 wt% of PEI on activated carbons and were investigated $CO_2$ adsorption capacity at high and low adsorption temperature. The $CO_2$ adsorption capacity at $20^{\circ}C$ and $100^{\circ}C$ was as follow: AC > PEI(10)-AC > PEI(30)-AC > PEI(50)-AC at $20^{\circ}C$ and PEI(10)-AC > PEI(30)-AC > PEI(50)-AC > AC at $100^{\circ}C$. Adsorption capacities of amine functionalized AC was lager than virgin AC at high temperature due to chemisorption by amino-group content. From the results, the PEI(10)-AC showed one of the most promising adsorbents for $CO_2$ capture from flue gas at high temperature.

이산화탄소 포집을 위한 기능성 흡착제인 폴리에틸렌이민(PEI)을 함침한 활성탄을 평가하였다. 이산화탄소 흡착제의 흡착 특성은 GC/TCD, BET 표면적 및 FT-IR을 사용하였다. 활성탄에 PEI를 10, 30, 50 wt%를 함침하여 흡착제를 합성하고, 온도변화에 따른 이산화탄소의 흡착능을 조사하였다. $20^{\circ}C$$100^{\circ}C$에서의 이산화탄소 흡착능은 다음과 같다: $20^{\circ}C$에서는 AC > PEI(10)-AC > PEI(30)-AC > PEI(50)-AC의 순으로 나타났으며, $100^{\circ}C$에서는 PEI(10)-AC > PEI(30)-AC > PEI(50)-AC > AC 순으로 나타났다. 아민 기능기의 활성탄의 흡착능이 순수 활성탄보다 아미노기에 의하여 화학 흡착 때문에 높은 온도에서 높게 나타났다. 본 연구의 결과로 PEI(10) 활성탄은 고온의 가스로부터 이산화탄소 포집에 가장 유능한 흡착제 중 하나로 보여진다.

Keywords

References

  1. Kim, Y. H., Yi, K. B., Park, S. Y., Ko, C. H., Park, J. H., Beum, H. T., Han, M. G. and Kim, J. N., "Characteristics of aqueous ammonia $CO_2$ reaction at regeneration condition of high temperature and pressure," Korean Chem. Eng. Res., 48(2), 253-258(2010).
  2. Plaza, M. G., Pevida, C., Arias, B., Fermoso, J., Rubiera, F. and Pis, J. J., "A comparison of two methods for producing $CO_2$ capture adsorbents," Energy Procedia, 1(1), 1107-1113 (2009). https://doi.org/10.1016/j.egypro.2009.01.146
  3. Shafeeyan, M. S., Daud, W. M. W. A., Houshmand, A. and Shamiri, A., "A review on surface modification of activated carbon for carbon dioxide adsorption," J. Anal. Appl. Pyrol., 89(2), 143-151(2010). https://doi.org/10.1016/j.jaap.2010.07.006
  4. Pevida, C., Snape, C. E. and Drage, T. C., "Templated polymeric materials as adsorbents for the post combustion capture of $CO_2$," Energy Procedia, 1(1), 869-874(2009). https://doi.org/10.1016/j.egypro.2009.01.115
  5. Rodriguez-reinoso, F., "The role of carbon materials in heterogeneous catalysis," Carbon, 36(3), 159-175(1998). https://doi.org/10.1016/S0008-6223(97)00173-5
  6. Siriwardane, R. V., Shen, M. S., Fisher, E. P. and Poston, J. A., "Adsorption of $CO_2$ on molecular sieves and activated carbon," Energy and Fuels, 15(2), 279-284(2001). https://doi.org/10.1021/ef000241s
  7. Huston, N. D., Speakman, S. A. and Payzant, E. A., "Structural effects on the high-temperature absorption of $CO_2$ on a synthetic hydrotalcite," Chem. Mater., 16(21), 4135-4143 (2004). https://doi.org/10.1021/cm040060u
  8. Arenillas, A., Drage, T. C., Smith, K. and Snape, C. E., "$CO_2$ removal potential of carbons prepared by co-pyrolysis of sugar and nitrogen containing compounds," J. Anal. Appl. Pyrol., 74(1-2), 298-306(2005). https://doi.org/10.1016/j.jaap.2004.11.020
  9. Drage, T. C., Smith, K. M., Pevida, C., Arenillas, A. and Snape, C. E., "Development of adsorbent technologies for post-combustion $CO_2$ capture," Energy Procedia, 1(1), 881-884(2009). https://doi.org/10.1016/j.egypro.2009.01.117
  10. Park, S. J. and Kim, K. D., "Adsorption behaviors of $CO_2$ and NH3 on chemically surface-treated activated carbons," J. Colloid Interface Sci., 212(1), 186-189(1999). https://doi.org/10.1006/jcis.1998.6058
  11. Chang, F. Y., Chao, K. J., Cheng, H. H. and Tan, C. S., "Adsorption of $CO_2$ onto amine-grafted mesoporous silicas," Sep. Purif. Technol., 70(1), 87-95(2009). https://doi.org/10.1016/j.seppur.2009.08.016
  12. Liang, Z., Fadhel, B., Schneider, C. J., Chaffee, A. L., "Stepwise growth of melamine-based dendrimers into mesopores and their $CO_2$ adsorption properties," Micro. Mesop. Mat., 111(15), 536-543(2008). https://doi.org/10.1016/j.micromeso.2007.08.030
  13. Amalina, M. D., Ibrahem, A. S. and Hadi, A., "General study about activated carbon for adsorption carbon dioxide," J. Purity, Utility React. Environ., 1(5), 206-221(2012).
  14. Lee, D. H., Kam, S. K., Lee, S. W. and Lee, M. K., "Adsorption characteristics of activated carbons according to impregnation concentrations and inlet $CO_2$ gas concentrations," J. Environ. Sci. Int., 26(12), 1403-1407(2010).
  15. Aroua, M. K., Daud, W. M. A. W., Yin, C. Y. and Adinata, D., "Adsorption capacities of carbon dioxide, oxygen, nitrogen and methane on carbon molecular basket derived from polyethyleneimine impregnation on microporous palm shell activated carbon," Sep. Purif. Technol., 62, 609-613(2008). https://doi.org/10.1016/j.seppur.2008.03.003
  16. Xu, X., Song, C., Andresen, J. M., Miller, B. G. and Scaroni, A. W., "Preparation and characterization of novel $CO_2$ "molecular basket" adsorbents based on polymer-modified mesoporous molecular sieve MCM41," Micro. Mesop. Mater., 62, 29-45(2003). https://doi.org/10.1016/S1387-1811(03)00388-3
  17. Plaza, M. G., Pevida, C., Arenillas, A., Rubiera, F. and Pis, J. J., "$CO_2$ capture by adsorption with nitrogen enriched carbons," Fuel, 86, 2204-2212(2007). https://doi.org/10.1016/j.fuel.2007.06.001
  18. Jang, D. I. and Park, S. J., "$CO_2$ Adsorption behaviors of activated carbon modified by chelating groups," Appl. Chem. Eng. Res., 21(4), 396-400(2010).
  19. Lee, K. M. and Jo, Y. M., "Adsorption characteristics of chemically modified sorbents for carbon dioxide," J. Korean Ind. Eng. Chem., 19(5), 533-538(2008).
  20. Lee, J. B. and Choi, S. W., "Characteristics of $CO_2$ adsorption by MEA impregnated MCM-41," Environ. Eng. Res., 33(9), 686-691(2011).
  21. Hong, M. S., Pankaj, S., Jung, Y. H., Park, S. Y., Park S. J. and Baek, I. H., "Seperation of carbon dioxide using pelletized zeolite adsorbent with amine impregnation," Korea Chem. Eng. Res., 50(2), 244-250(2012). https://doi.org/10.9713/kcer.2012.50.2.244
  22. Jang, H. T., Park, Y. K., Ko, Y. S. and Lee, J. Y., Margandan, B., "Highly siliceous MCM-48 from rice hush ash for $CO_2$ adsorption," Int. J. Greenh. Gas Con., 3(5), 545-549 (2009). https://doi.org/10.1016/j.ijggc.2009.02.008
  23. Kong, Y., Jin, L. and Qiu, J., "Synthesis, characterization, and $CO_2$ capture study of micro-nano carbonaceous composites," Sci. Total. Environ., 463-464, 192-198(2013). https://doi.org/10.1016/j.scitotenv.2013.05.050
  24. Subagyono, D. J. N., Liang, Z., Knowles, G. P., Webley, P. A. and Chaffee, A. L., "PEI modified mesocellular siliceous foam: A novel sorbent for $CO_2$," Energy Procedia, 4, 839-843(2011). https://doi.org/10.1016/j.egypro.2011.01.127