DOI QR코드

DOI QR Code

Enhancement of Ammonia Adsorption Performance by Impregnation of Metal Chlorides on Surface-Modified Activated Carbon

표면 개질 활성탄 위 금속 염화물의 첨착에 의한 암모니아 흡착 성능의 향상

  • Song, Kang (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Lim, Jeong-Hyeon (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Kim, Cheol-Gyu (Odor Management Institute) ;
  • Park, Cheon-Sang (World Vision) ;
  • Kim, Young-Ho (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
  • 송강 (충남대학교 응용화학공학과) ;
  • 임정현 (충남대학교 응용화학공학과) ;
  • 김철규 (악취관리연구소) ;
  • 박천상 (주식회사 월드비전) ;
  • 김영호 (충남대학교 응용화학공학과)
  • Received : 2021.11.08
  • Accepted : 2021.11.18
  • Published : 2021.12.10

Abstract

Effects of nitric acid treatment of an activated carbon and impregnation of metal chlorides on the activated carbon were investigated to improve ammonia adsorption performance. It was confirmed that functional groups such as hydroxyl and carboxyl groups were introduced onto a surface of the activated carbon with nitric acid treatment. Then, each metal chloride (NiCl2, MgCl2, CuCl2, MnCl2 or CoCl2) was impregnated onto the surface-modified activated carbon using an ultrasonic impregnation method. The physicochemical properties and ammonia adsorption performance of various impregnated activated carbons were observed. Metal chlorides were well dispersed by sonication and evenly distributed on the surface of the activated carbon. Despite the reduced specific surface area and pore volume, the surface-modified activated carbon impregnated with metal chlorides exhibited excellent ammonia adsorption performance. In particular, HNO3-NiCl2 AC prepared by impregnating NiCl2 showed the best ammonia adsorption capacity of 3.736 mmol·g-1, which was improved by about 57 times compared to that of an untreated activated carbon (0.066 mmol·g-1).

암모니아의 흡착 성능을 향상할 목적으로 활성탄의 질산 처리 및 활성탄으로 금속 염화물의 첨착 효과를 연구하였다. 질산 처리에 의해 활성탄으로 하이드록시기 및 카르복실기와 같은 작용기들의 도입을 확인하였다. 이후 초음파 함침법을 사용하여 각 금속 염화물(NiCl2, MgCl2, CuCl2, MnCl2 또는 CoCl2)을 표면 개질 활성탄 위로 첨착하였다. 여러첨착된 활성탄들의 물리화학적 특성과 암모니아 흡착 성능을 관찰하였다. 금속 염화물은 초음파 처리에 의해 원활하게 분산되었으며 활성탄 표면 위에 고르게 분포되었다. 금속 염화물이 첨착된 표면 개질 활성탄은 감소된 비표면적 및 세공 부피에도 불구하고 매우 우수한 암모니아 흡착 성능을 나타내었다. 특히, NiCl2를 첨착하여 제조한 HNO3-NiCl2 AC는 가장 우수한 암모니아 흡착능(3.736 mmol·g-1)을 나타내었으며, 미처리된 활성탄(0.066 mmol·g-1)과 비교하여 약 57배 향상되었다.

Keywords

Acknowledgement

This work was supported by research fund of Chungnam Green Environment Center.

References

  1. M. A. Shipman and M. D. Symes, Recent progress towards the electrosynthesis of ammonia from sustainable resource, Catal. Today, 286, 57-68 (2017). https://doi.org/10.1016/j.cattod.2016.05.008
  2. H. Kobayashi, A. Hayakawa, K. D. K. A. Somarathne, and E. C. Okafor, Science and technology of ammonia combustion, Proc. Combust. Inst., 37, 109-133 (2019). https://doi.org/10.1016/j.proci.2018.09.029
  3. N. Vajrala, W. M. Habbena, L. A. S. Soto, A. Schauer, P. J. Bottomley, D. A. Stahl, and D. J. Arp, Hydroxylamine as an intermediate in ammonia oxidation by globally abundant marine archaea, Proc. Natl. Acad. Sci. U.S.A., 110, 1006-1011 (2013). https://doi.org/10.1073/pnas.1214272110
  4. Y. G. Park and J. I. Kim, Efficiency characteristics by mixed absorbents for the removal of odor compounds in the wet scrubber, Appl. Chem. Eng., 22, 48-55 (2011).
  5. C. C. Huang, H. S. Li, and C. H. Chen, Effect of surface acidic oxides of activated carbon on adsorption of ammonia, J. Hazard. Mater., 159, 523-527 (2008). https://doi.org/10.1016/j.jhazmat.2008.02.051
  6. J. H. Shin and S. C. Hong, A study of nitric oxide oxidation catalyst using non-noble metals, Appl. Chem. Eng., 32, 385-392 (2021). https://doi.org/10.14478/ACE.2021.1045
  7. H. S. Jung, Y. S. Won, D. M. Siregar, S. K. Mission, and J. H. Lim, Removal of hydrogen sulfide by using sodium carbonate impregnated activated carbon fiber, Clean. Technol., 23, 113-117 (2017). https://doi.org/10.7464/KSCT.2017.23.1.113
  8. A. Salimova, J. Zuo, F. Liu, Y. Wang, S. Wang, and K. Verichev, Ammonia and phosphorous removal from agricultural runoff using cash crop waste-derived biochars, Front. Environ. Sci. Eng., 14, 1-13 (2020). https://doi.org/10.1007/s11783-019-1180-x
  9. S. W. Lee, G. Y. Oh, R. N. Kim, and D. K. Kim, Surface properties of modified activated carbon for ammonia gas removal, J. KOSAE., 29, 317-324 (2013). https://doi.org/10.5572/KOSAE.2013.29.3.317
  10. J. Lemus, J. Bedia, C. Moya, N. A. Morales, M. A. Gilarranz, J. Palomar, and J. J. Rodriguez, Ammonia capture from the gas phase by encapsulated ionic liquids (ENILs), RSC Adv., 6, 61650-61660 (2016). https://doi.org/10.1039/C6RA11685J
  11. M. Goncalves, L. S. Garcia, E. O. Jardim, J. S. Albero, and F. R. Reinoso, Ammonia removal using activated carbons: effect of the surface chemistry in dry and moist conditions, Environ. Sci. Technol., 45, 10605-10610 (2011). https://doi.org/10.1021/es203093v
  12. L. N. Mchugh, A. Terracina, P. S. Wheatley, G. Buscarino, M. W. Smith, and R. E. Morris, Metal-organic framework-activated carbon composite materials for the removal of ammonia from contaminated airstreams, Angew. Chem. Int. Ed., 58, 11747-11751 (2019). https://doi.org/10.1002/anie.201905779
  13. H. T. jang, Y. K. Park, and Y. S. Ko, Ammonia conversion in the presence of precious metal catalysts, Korean Chem. Eng. Res., 46, 806-812 (2008).
  14. J. Y. Kim, J. Y. Kim, Y. H. Lee, M. S. Kim, M. S. Kim, H. J. Kim, T. I. Ryu, J. H. Jeong, S. R. Hwang, K. Kim, and J. H. Lee, Removal efficiency of ammonia and toluene using mobile scrubber, Korean J. Environ. Agric., 37, 49-56 (2018). https://doi.org/10.5338/KJEA.2018.37.1.02
  15. O. Mathieu and E. L. Peterson, Experimental and modeling study on the high-temperature oxidation of ammonia and related NOx chemistry, Combust. Flame, 162, 554-570 (2015). https://doi.org/10.1016/j.combustflame.2014.08.022
  16. W. Zheng, J. Hu, S. Rappeport, Z. Zheng, Z. Wang, Z. Han, J. Langer, and J. Economy, Activated carbon fiber composites for gas phase ammonia adsorption, Micropor. Mesopor. Mater., 234, 146-154 (2016). https://doi.org/10.1016/j.micromeso.2016.07.011
  17. H. N. Yang, A. Zuttel, S. D. Kim, Y. D. Ko, and W. J. Kim, Effect of boron doping on graphene oxide for ammonia adsorption, Chem. Nano. Mater., 3, 794-797 (2017).
  18. I. Spanopoulos, I. Bratsos, C. Tampaxis, A. Kourtellaris, G. Charalambopoulou, T. A. Steriotis, and P. N. Trikalitis, Enhanced gas-sorption properties of a high surface area, ultramicroporous magnesium formate, Cryst. Eng. Comm., 17, 532-539 (2014).
  19. K. Vikrant, V. Kumar, K. H. Kim, and D. Kukkar, Metal-organic frameworks (MOFs): potential and challenges for capture and abatement of ammonia, J. Mater. Chem., 5, 22877-22896 (2017). https://doi.org/10.1039/C7TA07847A
  20. A. G. Bannov, O. Jasek. J. Prasek, J. Bursik, and L. Zajickova, Enhanced ammonia adsorption on directly deposited nanofibrous carbon films, J. Sens., 2018, 1-14 (2019).
  21. R. E. Lee, C. H. Lim, M. J. Kim, and Y. S. Lee. Acetic acid gas adsorption characteristics of activated carbon fiber by plasma and direct gas fluorination, Appl. Chem. Eng., 32, 55-60 (2021). https://doi.org/10.14478/ACE.2020.1098
  22. S. J. park and B. J. Kim, Ammonia removal of activated carbon fibers produced by oxyfluorination, J. Colloid Interface Sci., 291, 597-599 (2005). https://doi.org/10.1016/j.jcis.2005.05.012
  23. Y. H. kim and S. J. Park, Effect of pre-oxidation of pitch by H2O2 on porosity of activated carbons, Appl. Chem. Eng., 21, 183-187 (2010).
  24. J. J. Lee and K. S. Lee, Changes of adsorption capacity and structural properties during in situ regeneration of activated carbon bed using ozonated water, Appl. Chem. Eng., 31, 341-345 (2020). https://doi.org/10.14478/ACE.2020.1037
  25. K. Pyrzynska and M. Bystrzejewski, Comparative study of heavy metal ions sorption onto activated carbon, carbon nanotubes, and carbon-encapsulated magnetic nanoparticles, Colloids Surf. A Physicochem. Eng. Asp., 362, 102-109 (2010). https://doi.org/10.1016/j.colsurfa.2010.03.047
  26. T. Mochizuki, M. Kubota, H. Matsuda, and L. F. D. Camacho, Adsorption behaviors of ammonia and hydrogen sulfide on activated carbon prepared from petroleum coke by KOH chemical activation, Fuel. Process. Technol., 144, 164-169 (2016). https://doi.org/10.1016/j.fuproc.2015.12.012
  27. L. Li, S. Liu, and J. Liu, Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal, J. Hazard. Mater., 192, 683-690 (2011). https://doi.org/10.1016/j.jhazmat.2011.05.069
  28. A. Allwar, R. Hartati, and I. Fatimah, Effect of nitric acid treatment on activated carbon derived from oil palm shell, IOSR J. Appl. Chem., 1823, 9-15 (2017).
  29. A. Qajar, M. Peer, M. R. Andalibi, R. Rajagopalan, and H. C. Foley, Enhanced ammonia adsorption on functionalized nanoporous carbons, Micropor. Mesopor. Mater., 218, 15-23 (2015). https://doi.org/10.1016/j.micromeso.2015.06.030
  30. S. H. Pak, M. J. Jeon, and Y. W. Jeon, Study of sulfuric acid treatment of activated carbon used to enhance mixed VOC removal, Int. Biodeterior. Biodegradation., 113, 195-200 (2016). https://doi.org/10.1016/j.ibiod.2016.04.019
  31. E. Rezaei, R. Azar, M. Nemati, and B. Predicala, Gas phase adsorption of ammonia using nano TiO2-activated carbon composites-effect of TiO2 loading and composite characterization, J. Environ. Chem. Eng., 5, 5902-5911 (2017). https://doi.org/10.1016/j.jece.2017.11.010
  32. G. H. Cho, J. H. Park, H. U. Rasheed, H. C. Yoon, and K. B. Yi, A study on the adsorption and desorption characteristics of metal-impregnated activated carbons with metal precursors for the regeneration and concentration of ammonia, Clean Technol., 26, 137-144 (2020). https://doi.org/10.7464/KSCT.2020.26.2.137
  33. J. H. Park, R. H. Hwang, H. C. Yoon, and K. B. Yi, Effects of metal loading on activated carbon on its adsorption and desorption characteristics, J. Ind. Eng. Chem., 74, 199-207 (2019). https://doi.org/10.1016/j.jiec.2019.03.004
  34. J. H. Park, H. U. Rasheed, K. H. Cho, H. C. Yoon, and K. B. Yi, Effects of magnesium loading on ammonia capacity and thermal stability of activated carbons, Korean. J. Chem. Eng., 37, 1029-1035 (2020). https://doi.org/10.1007/s11814-020-0508-3
  35. A. Alabadi, S. Razzaque, Y. Yang, S. Chen, and B. Tan, Highly porous activated carbon materials from carbonized biomass with high CO2 capturing capacity, Chem. Eng. J., 281, 606-612 (2015). https://doi.org/10.1016/j.cej.2015.06.032
  36. C. M. Castilla, F. C. Marin, F. J. M. Hodar, and J. R. Utrilla, Effects of non-oxidant and oxidation acid treatments on the surface properties of an activated carbon with very low ash content, Carbon, 36, 145-151 (1998). https://doi.org/10.1016/S0008-6223(97)00171-1
  37. J. J. A. Daza, G. A. Pasquale, J. A. R. Herrea, G. P. Romanelli, and L. R. Pizzio, Mesoporous activated carbon from sunflower shells modified with sulfonic acid groups as solid acid catalyst for itaconic acid esterification, Catal. Today, 372, 51-58 (2021). https://doi.org/10.1016/j.cattod.2020.12.011
  38. K. S. Lee, Y. J. Seo, and H. T. Jeong, Capacitive behavior of functionalized activated carbon-based all-solid-state supercapacitor, Carbon Lett., 31, 1041-1049 (2021). https://doi.org/10.1007/s42823-020-00219-w
  39. N. Y. Rachel, B. Abdelaziz, N. J. Nsami, K. Daouda, Y. Abdelrani, L. Mehdi, L. Khalid, and K. M. Joseph, Antibacterial properties of AgNO3-activated carbon composite on Escherichia Coli: inhibition action, Int. J. Adv. Chem., 6, 46-52 (2018). https://doi.org/10.14419/ijac.v6i1.9048
  40. K. Nuithitikul, R. Phromrak, and W. Saengngoen, Utilization of chemically treated cashew-nut shell as potential adsorbent for removal of Pb(II) ions from aqueous solution, Nature, 10, 1-14 (2020). https://doi.org/10.1038/010001a0
  41. O. V. Netskina, A. A. Pochtar, O. V. Komova, and V. I. Simagina, Solid-state NaBH4 composites as hydrogen generation material: effect of thermal treatment of a catalyst precursor on the hydrogen generation rate, Catalysts, 10, 201-212 (2020). https://doi.org/10.3390/catal10020201
  42. T. Zhang, H. Miyaoka, H. Miyaoka, T. Ichikawa, and Y. Kojima, Review on ammonia absorption materials: metal hydrides, halides, and borohydrides, ACS Appl. Energy Mater., 1, 232-242 (2018). https://doi.org/10.1021/acsaem.7b00111
  43. Y. Kojima, and M. Yamaguchi, Ammonia storage materials for nitrogen recycling hydrogen and energy carriers, Int. J. Hydrog. Energy, 45, 10233-10246 (2018). https://doi.org/10.1016/j.ijhydene.2020.01.145