Acknowledgement
This work was supported by research fund of Chungnam Green Environment Center.
References
- M. A. Shipman and M. D. Symes, Recent progress towards the electrosynthesis of ammonia from sustainable resource, Catal. Today, 286, 57-68 (2017). https://doi.org/10.1016/j.cattod.2016.05.008
- H. Kobayashi, A. Hayakawa, K. D. K. A. Somarathne, and E. C. Okafor, Science and technology of ammonia combustion, Proc. Combust. Inst., 37, 109-133 (2019). https://doi.org/10.1016/j.proci.2018.09.029
- N. Vajrala, W. M. Habbena, L. A. S. Soto, A. Schauer, P. J. Bottomley, D. A. Stahl, and D. J. Arp, Hydroxylamine as an intermediate in ammonia oxidation by globally abundant marine archaea, Proc. Natl. Acad. Sci. U.S.A., 110, 1006-1011 (2013). https://doi.org/10.1073/pnas.1214272110
- Y. G. Park and J. I. Kim, Efficiency characteristics by mixed absorbents for the removal of odor compounds in the wet scrubber, Appl. Chem. Eng., 22, 48-55 (2011).
- C. C. Huang, H. S. Li, and C. H. Chen, Effect of surface acidic oxides of activated carbon on adsorption of ammonia, J. Hazard. Mater., 159, 523-527 (2008). https://doi.org/10.1016/j.jhazmat.2008.02.051
- J. H. Shin and S. C. Hong, A study of nitric oxide oxidation catalyst using non-noble metals, Appl. Chem. Eng., 32, 385-392 (2021). https://doi.org/10.14478/ACE.2021.1045
- H. S. Jung, Y. S. Won, D. M. Siregar, S. K. Mission, and J. H. Lim, Removal of hydrogen sulfide by using sodium carbonate impregnated activated carbon fiber, Clean. Technol., 23, 113-117 (2017). https://doi.org/10.7464/KSCT.2017.23.1.113
- A. Salimova, J. Zuo, F. Liu, Y. Wang, S. Wang, and K. Verichev, Ammonia and phosphorous removal from agricultural runoff using cash crop waste-derived biochars, Front. Environ. Sci. Eng., 14, 1-13 (2020). https://doi.org/10.1007/s11783-019-1180-x
- S. W. Lee, G. Y. Oh, R. N. Kim, and D. K. Kim, Surface properties of modified activated carbon for ammonia gas removal, J. KOSAE., 29, 317-324 (2013). https://doi.org/10.5572/KOSAE.2013.29.3.317
- J. Lemus, J. Bedia, C. Moya, N. A. Morales, M. A. Gilarranz, J. Palomar, and J. J. Rodriguez, Ammonia capture from the gas phase by encapsulated ionic liquids (ENILs), RSC Adv., 6, 61650-61660 (2016). https://doi.org/10.1039/C6RA11685J
- M. Goncalves, L. S. Garcia, E. O. Jardim, J. S. Albero, and F. R. Reinoso, Ammonia removal using activated carbons: effect of the surface chemistry in dry and moist conditions, Environ. Sci. Technol., 45, 10605-10610 (2011). https://doi.org/10.1021/es203093v
- L. N. Mchugh, A. Terracina, P. S. Wheatley, G. Buscarino, M. W. Smith, and R. E. Morris, Metal-organic framework-activated carbon composite materials for the removal of ammonia from contaminated airstreams, Angew. Chem. Int. Ed., 58, 11747-11751 (2019). https://doi.org/10.1002/anie.201905779
- H. T. jang, Y. K. Park, and Y. S. Ko, Ammonia conversion in the presence of precious metal catalysts, Korean Chem. Eng. Res., 46, 806-812 (2008).
- J. Y. Kim, J. Y. Kim, Y. H. Lee, M. S. Kim, M. S. Kim, H. J. Kim, T. I. Ryu, J. H. Jeong, S. R. Hwang, K. Kim, and J. H. Lee, Removal efficiency of ammonia and toluene using mobile scrubber, Korean J. Environ. Agric., 37, 49-56 (2018). https://doi.org/10.5338/KJEA.2018.37.1.02
- O. Mathieu and E. L. Peterson, Experimental and modeling study on the high-temperature oxidation of ammonia and related NOx chemistry, Combust. Flame, 162, 554-570 (2015). https://doi.org/10.1016/j.combustflame.2014.08.022
- W. Zheng, J. Hu, S. Rappeport, Z. Zheng, Z. Wang, Z. Han, J. Langer, and J. Economy, Activated carbon fiber composites for gas phase ammonia adsorption, Micropor. Mesopor. Mater., 234, 146-154 (2016). https://doi.org/10.1016/j.micromeso.2016.07.011
- H. N. Yang, A. Zuttel, S. D. Kim, Y. D. Ko, and W. J. Kim, Effect of boron doping on graphene oxide for ammonia adsorption, Chem. Nano. Mater., 3, 794-797 (2017).
- I. Spanopoulos, I. Bratsos, C. Tampaxis, A. Kourtellaris, G. Charalambopoulou, T. A. Steriotis, and P. N. Trikalitis, Enhanced gas-sorption properties of a high surface area, ultramicroporous magnesium formate, Cryst. Eng. Comm., 17, 532-539 (2014).
- K. Vikrant, V. Kumar, K. H. Kim, and D. Kukkar, Metal-organic frameworks (MOFs): potential and challenges for capture and abatement of ammonia, J. Mater. Chem., 5, 22877-22896 (2017). https://doi.org/10.1039/C7TA07847A
- A. G. Bannov, O. Jasek. J. Prasek, J. Bursik, and L. Zajickova, Enhanced ammonia adsorption on directly deposited nanofibrous carbon films, J. Sens., 2018, 1-14 (2019).
- R. E. Lee, C. H. Lim, M. J. Kim, and Y. S. Lee. Acetic acid gas adsorption characteristics of activated carbon fiber by plasma and direct gas fluorination, Appl. Chem. Eng., 32, 55-60 (2021). https://doi.org/10.14478/ACE.2020.1098
- S. J. park and B. J. Kim, Ammonia removal of activated carbon fibers produced by oxyfluorination, J. Colloid Interface Sci., 291, 597-599 (2005). https://doi.org/10.1016/j.jcis.2005.05.012
- Y. H. kim and S. J. Park, Effect of pre-oxidation of pitch by H2O2 on porosity of activated carbons, Appl. Chem. Eng., 21, 183-187 (2010).
- J. J. Lee and K. S. Lee, Changes of adsorption capacity and structural properties during in situ regeneration of activated carbon bed using ozonated water, Appl. Chem. Eng., 31, 341-345 (2020). https://doi.org/10.14478/ACE.2020.1037
- K. Pyrzynska and M. Bystrzejewski, Comparative study of heavy metal ions sorption onto activated carbon, carbon nanotubes, and carbon-encapsulated magnetic nanoparticles, Colloids Surf. A Physicochem. Eng. Asp., 362, 102-109 (2010). https://doi.org/10.1016/j.colsurfa.2010.03.047
- T. Mochizuki, M. Kubota, H. Matsuda, and L. F. D. Camacho, Adsorption behaviors of ammonia and hydrogen sulfide on activated carbon prepared from petroleum coke by KOH chemical activation, Fuel. Process. Technol., 144, 164-169 (2016). https://doi.org/10.1016/j.fuproc.2015.12.012
- L. Li, S. Liu, and J. Liu, Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal, J. Hazard. Mater., 192, 683-690 (2011). https://doi.org/10.1016/j.jhazmat.2011.05.069
- A. Allwar, R. Hartati, and I. Fatimah, Effect of nitric acid treatment on activated carbon derived from oil palm shell, IOSR J. Appl. Chem., 1823, 9-15 (2017).
- A. Qajar, M. Peer, M. R. Andalibi, R. Rajagopalan, and H. C. Foley, Enhanced ammonia adsorption on functionalized nanoporous carbons, Micropor. Mesopor. Mater., 218, 15-23 (2015). https://doi.org/10.1016/j.micromeso.2015.06.030
- S. H. Pak, M. J. Jeon, and Y. W. Jeon, Study of sulfuric acid treatment of activated carbon used to enhance mixed VOC removal, Int. Biodeterior. Biodegradation., 113, 195-200 (2016). https://doi.org/10.1016/j.ibiod.2016.04.019
- E. Rezaei, R. Azar, M. Nemati, and B. Predicala, Gas phase adsorption of ammonia using nano TiO2-activated carbon composites-effect of TiO2 loading and composite characterization, J. Environ. Chem. Eng., 5, 5902-5911 (2017). https://doi.org/10.1016/j.jece.2017.11.010
- G. H. Cho, J. H. Park, H. U. Rasheed, H. C. Yoon, and K. B. Yi, A study on the adsorption and desorption characteristics of metal-impregnated activated carbons with metal precursors for the regeneration and concentration of ammonia, Clean Technol., 26, 137-144 (2020). https://doi.org/10.7464/KSCT.2020.26.2.137
- J. H. Park, R. H. Hwang, H. C. Yoon, and K. B. Yi, Effects of metal loading on activated carbon on its adsorption and desorption characteristics, J. Ind. Eng. Chem., 74, 199-207 (2019). https://doi.org/10.1016/j.jiec.2019.03.004
- J. H. Park, H. U. Rasheed, K. H. Cho, H. C. Yoon, and K. B. Yi, Effects of magnesium loading on ammonia capacity and thermal stability of activated carbons, Korean. J. Chem. Eng., 37, 1029-1035 (2020). https://doi.org/10.1007/s11814-020-0508-3
- A. Alabadi, S. Razzaque, Y. Yang, S. Chen, and B. Tan, Highly porous activated carbon materials from carbonized biomass with high CO2 capturing capacity, Chem. Eng. J., 281, 606-612 (2015). https://doi.org/10.1016/j.cej.2015.06.032
- C. M. Castilla, F. C. Marin, F. J. M. Hodar, and J. R. Utrilla, Effects of non-oxidant and oxidation acid treatments on the surface properties of an activated carbon with very low ash content, Carbon, 36, 145-151 (1998). https://doi.org/10.1016/S0008-6223(97)00171-1
- J. J. A. Daza, G. A. Pasquale, J. A. R. Herrea, G. P. Romanelli, and L. R. Pizzio, Mesoporous activated carbon from sunflower shells modified with sulfonic acid groups as solid acid catalyst for itaconic acid esterification, Catal. Today, 372, 51-58 (2021). https://doi.org/10.1016/j.cattod.2020.12.011
- K. S. Lee, Y. J. Seo, and H. T. Jeong, Capacitive behavior of functionalized activated carbon-based all-solid-state supercapacitor, Carbon Lett., 31, 1041-1049 (2021). https://doi.org/10.1007/s42823-020-00219-w
- N. Y. Rachel, B. Abdelaziz, N. J. Nsami, K. Daouda, Y. Abdelrani, L. Mehdi, L. Khalid, and K. M. Joseph, Antibacterial properties of AgNO3-activated carbon composite on Escherichia Coli: inhibition action, Int. J. Adv. Chem., 6, 46-52 (2018). https://doi.org/10.14419/ijac.v6i1.9048
- K. Nuithitikul, R. Phromrak, and W. Saengngoen, Utilization of chemically treated cashew-nut shell as potential adsorbent for removal of Pb(II) ions from aqueous solution, Nature, 10, 1-14 (2020). https://doi.org/10.1038/010001a0
- O. V. Netskina, A. A. Pochtar, O. V. Komova, and V. I. Simagina, Solid-state NaBH4 composites as hydrogen generation material: effect of thermal treatment of a catalyst precursor on the hydrogen generation rate, Catalysts, 10, 201-212 (2020). https://doi.org/10.3390/catal10020201
- T. Zhang, H. Miyaoka, H. Miyaoka, T. Ichikawa, and Y. Kojima, Review on ammonia absorption materials: metal hydrides, halides, and borohydrides, ACS Appl. Energy Mater., 1, 232-242 (2018). https://doi.org/10.1021/acsaem.7b00111
- Y. Kojima, and M. Yamaguchi, Ammonia storage materials for nitrogen recycling hydrogen and energy carriers, Int. J. Hydrog. Energy, 45, 10233-10246 (2018). https://doi.org/10.1016/j.ijhydene.2020.01.145