• Title/Summary/Keyword: Acoustic shell

Search Result 74, Processing Time 0.022 seconds

Acoustic Radiation from a Submerged Stiffened Cylindrical Shell Excited by Resiliently Mounted Machinery (탄성지지된 기계류에 의해 가진되는 잠수된 보강 원통형 셸의 음향방사)

  • Bae, Soo Ryong;Lee, Shibok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.1
    • /
    • pp.33-39
    • /
    • 2015
  • This paper investigates the underwater acoustic radiation from a periodically stiffened cylindrical shell excited resiliently mounted machinery. Underwater acoustic radiation is important to a submarine. Generally, submarine structure can be modeled as stiffened cylindrical shell immersed in water. Analytical model is derived for the far-field acoustic radiation from machinery installed inside cylindrical shell. The analytical model includes the effect of fluid loading and interactions between periodic ring stiffeners. Transmitted force from machine to a shell through isolator can be different by the impedance of shell. In this paper the effect of a shell impedance for acoustic radiation is investigated. Impedance of a shell should be considered if thickness of a shell is thin.

Characteristics of Coupled Acoustic Wave Propagation in Metal Pipe (금속 배관의 연성된 음향 전파 특성)

  • Kim, Ho-Wuk;Kim, Min-Soo;Lee, Sang-Kwon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.3
    • /
    • pp.267-273
    • /
    • 2008
  • The circular cylinder pipes are used in the many industrial areas. In this paper, the acoustic wave propagation in the pipe containing a gas is researched. First of all, the theory for the coupled acoustic wave propagation in a pipe is investigated. Acoustic wave propagation in pipe can not be occurred independently between the wave of the fluid and the shell. It requires complicated analysis. However, as a special case, the coupled wave in a high density pipe containing a light density medium is corresponded closely to the uncoupled in-vacuo shell waves and to the rigid-walled duct fluid waves. The coincidence frequencies of acoustic and shell modes contribute to the predominant energy transmission. The coincidence frequency means the frequency corresponding to the coincidence of the wavenumber in both acoustic and shell. In this paper, it is assumed that the internal medium is much lighter than the pipe shell. After the uncoupled acoustic wave in the internal medium and uncoupled shell wave are considered, the coincidence frequencies are found. The analysis is successfully confirmed by the verification of the experiment using the real long steel pipe. This work verifies that the coupled wave characteristic of the shell and the fluid is occurred as predominant energy transmission at the coincidence frequencies.

Acoustic radiation from resiliently mounted machinery in fluid loaded infinite cylindrical shell with periodic ring supports (보강 원통형 쉘에 탄성 지지된 기계류에 의한 수중 음향 방사)

  • Bae, Soo Ryong;Jung, Woo Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.644-649
    • /
    • 2014
  • Analytical model is derived for the far-field acoustic radiation from machinery installed inside cylindrical shell. The analytical model includes the effect of fluid loading and interactions between periodic ring supports. Transmitted force from machine to a shell can be different by the impedance of shell. In this paper the transmitted force from machinery to a infinite shell through vibration isolator is considered by the impedance of shell. The effect of the shell impedance for acoustic radiation is investigated.

  • PDF

PZT5 spherical shell-typed hydrophone simulation using a coupled FE-BE method

  • Jarng, Soon-Suck
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06c
    • /
    • pp.477-481
    • /
    • 1998
  • This paper describes the application of a coupled finite element-boundary element method to obtain the steady-state response of a hydrophone. The particular structure considered is a flooded piezoelectric spherical shell. The hydrophone is three-dimensionally simulated to transduce an incident plane acoustic pressure onto the outer surface of the sonar spherical shell to electrical potentials on inner and outer surfaces of the shell. The acoustic field formed from the scattered sound pressure is also simulated. And the displacement of the shell caused by the externally incident acoustic pressure is shown in temporal motion. The coupled FE-BE method is described in detail.

  • PDF

Acoustic Identification of Inner Materials in a Single-layer Cylindrical Shell with Resonance Scattering Theory (공명 산란 이론을 이용한 단일층 원통형 껍질 내부 물질의 음향 식별)

  • Jo, Young-Tae;Kim, Wan-Gu;Yoon, Suk Wang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.4
    • /
    • pp.257-263
    • /
    • 2015
  • Acoustic identification of inner materials in a single-layer cylindrical shell is investigated with acoustic resonance theory. The theoretical resonance peak frequencies for a cylindrical shell are little affected by the density variation, but remarkably changed by the sound speed variation of inner materials. Such acoustic dependency can be utilized to identify inner materials in a cylindrical shell. Acoustic resonance spectrogram for a single-layer cylindrical shell is theoretically plotted as functions of normalized frequency and sound speed of inner materials. The inner materials can be acoustically identified by overlapping acoustic resonance peaks from measured backscattering sound field on the spectrogram. To experimentally confirm this method, backscattering sound field of cylindrical shell filled with water, oil or ethylene glycol was measured in water tank. The inner materials could be identified by acoustic resonance peaks of the backscattering sound field monostatically measured with a transduce of 1.05 MHz center frequency.

Vibro-acoustic Characteristics of a Cylindrical Shell Type Gearbox Models by Helical Gear Excitation (헬리컬기어 가진에 의한 원통형 기어박스 모델의 진동음향 특성)

  • Park, Chan IL
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.1
    • /
    • pp.36-42
    • /
    • 2017
  • Helical gear excitation is transmitted to a gearbox through the shafts and bearings and the vibration of the gearbox radiates the noise in the air. Therefore gearbox modeling is essential to evaluate the gear noise. This work deals with vibration and acoustic analysis of a cylindrical shell-type gearbox with/without holes excited by helical gears and focuses on the development of the simple gearbox model. To do so, helical gears and bearing forces are calculated. Gearbox with/without holes is modeled by the aluminum end plates and PMMA cylindrical shell body. The vibration mode and the forced harmonic response were calculated by the commercial FE software and the end plate of the gearbox is more contributed to vibration than the body. Acoustic analysis was also conducted by the commercial acoustic software and a cylindrical shell type gearbox with/without holes has the similar vibro-acoustic characteristics.

Acoustic scattering of an obliquely incident acoustic field by a finite elastic cylindrical shell (비스듬히 입사하는 음장에 대한 유한 길이의 탄성 원통 쉘의 음향 산란)

  • Lee, Keunhwa;Byun, Sung-Hoon;Kim, Sea-Moon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.5
    • /
    • pp.511-521
    • /
    • 2019
  • In this study, we theoretically study the acoustic scattering of an obliquely incident plane wave from a finite elastic cylindrical shell. A heuristic scattering method of Ye [Z. Ye, J. Acoust. Soc. Am. 102, 877-884 (1997)] for a finite fluid cylinder is extended into a finite elastic cylindrical shell since no analytic solutions exist in the finite cylinder. The elastic cylindrical shell is modeled with the 3D elastic wave theory considering internal fluid. Using the derived analytic solution, we observe the effect of the internal fluid on the scattering field, the scattering field for the Rayleigh parameter, and the far-field scattering function for the elastic property of the cylindrical shell.

Vibroacoustics of Axisymmetric Cylindrical Elastic Shells (축대칭 원통 탄성 쉘의 진동음향)

  • Park, Chan-IL
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.160-165
    • /
    • 2008
  • Fluid loading of a vibrating cylindrical shell can change natural frequencies and vibration magnitudes of the shell and a vibrating cylindrical shell can also change acoustic pressure of fluid. The vibroacoustics of fluid-filled cylindrical shells need the coupled solution of Helmholtz equation and governing equation of a cylindrical shell with boundary conditions. This paper proposed the wall impedance of fluid-filled axisymmetric cylindrical shells, focusing on the inner fluid/shell interaction. To propose the impedance, shell displacements used the linear combination of in vacuo shell modes. Acoustic pressure prediction of fluid used Kirchchoff-Helmholtz Integral equation with Green function of the plane mode. For the demonstration of the proposed results, numerical applications on mufflers were conducted.

  • PDF

PZT5 spherical hydrophone simulation using a coupled FE-BE method (결합형 유한요소-경계요소 기법을 활용한 PZT5 구형 수중 수파기 시뮬레이션)

  • Jarng, Soon-Suck
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.6
    • /
    • pp.377-385
    • /
    • 1998
  • This paper describes the application of a coupled finite element-boundary element method to obtain the steady-state response of a hydrophone. The particular structure considered is a flooded piezoelectric spherical shell. The hydrophone is three-dimensionally simulated to transduce an incident plane acoustic pressure onto the outer surface of the sonar spherical shell to electrical potentials on inner and outer surfaces of the shell. The acoustic field formed from the scattered sound pressure is also simulated. And the displacement of the shell caused by the externally incident acoustic pressure is shown in temporal motion. The coupled FE-BE method is described in detail.

  • PDF

A hybrid algorithm of underwater structure vibration and acoustic radiation-propagation in ocean acoustic channel

  • Duan, Jia-xi;Zhang, Lin;Da, Liang-long;Sun, Xue-hai;Chen, Wen-jing
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.680-690
    • /
    • 2020
  • In ocean environment, the sound speed gradient of seawater has an important influence on far field sound propagation. The FEM/BEM is used to decouple the vibroacoustic radiation of the spherical shell, and the Green function of the virtual source chain is adopted for decoupling. For far field radiated Sound Pressure Level (SPL), the Beam Displacement Ray normal Mode (BDRM) is employed. The vibration and near-/far-field radiated SPL of spherical shell is analyzed in shallow sea uniform layer, negative/positive gradient, negative thermocline environment, and deep-sea sound channel. Results show that the vibroacoustic radiation of spherical shell acted at 300Hz can be analogous to dipole. When the radiated field of the spherical shell is dominated by large-grazing-angle waves, it can be analogous to vertically distributed dipole, and the far field radiated SPL is lower; while similar to horizontally distributed dipole if dominated by small-grazing-angle waves, and the far field SPL is high.