• Title/Summary/Keyword: Acoustic parameters

Search Result 846, Processing Time 0.029 seconds

Audiometric Calibration of Aural Acoustic Immittance Instrument: A Review of Acoustic Immittance Instrument's Calibration

  • Kim, Jin-Dong
    • Biomedical Science Letters
    • /
    • v.22 no.4
    • /
    • pp.115-126
    • /
    • 2016
  • Audiometric calibration is a prerequisite for securing the reliability of audiometric test results by checking the internal consistency of the relevant instrument. The purpose of this review is to help instrument operators understand the calibration procedure of aural acoustic immittance instrument which is frequently used for objective assessment. By referring to the latest international standards and the national standards relevant to the aural acoustic immittance instrument, the following parameters will be reviewed: 1) introduction of performance characteristics, 2) detailed procedure of the calibration method. According to the newest international and national standards [IEC 60645-5 (2004), ANSI S3.39-1987 (R2012)], the aural acoustic immittance instrument basically includes six components: 1) calibration cavity, 2) acoustic immittance analysis system, 3) probe assembly/unit and signal, 4) pneumatic air-pressure pump system, 5) acoustic reflex activator system and 6) tympanogram and acoustic reflex plotting system, each of these components should meet set standards. The result of behavioral hearing tests is influenced by various complex factors including the examinee's cooperation, background noise of the examination room, measurement method, skill level of the audiologist and calibration status, but the objective hearing tests is more influenced by the calibration status of the instrument than any other factors. The audiologist should take full responsibility for the reliability of the hearing test result, so he/she should carry out the calibration check and adjustments of aural acoustic immittance instrument periodically and maintain the instrument continuously by referring to the newest standards and the manufacturer's instruction manual.

Comparison of Predicted Acoustics with the Measured Acoustic Properties of a Multi-Purpose Hall

  • Haan, Chan-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.3E
    • /
    • pp.95-100
    • /
    • 2006
  • The present study presents the design procedures and the acoustic properties of the main hall of Ansan Cultural Arts Center in Korea which has opened in 2004. The acoustic design values are compared with the measured acoustic properties of the completed multi-purpose hall. Acoustic design criteria were suggested in the design stage through the 3-dimentional computer simulations. The acoustic parameters including SPL, RT, C80, $D_{50}$M, RASTI were measured in the hall after completed. Acoustic measurements were carried out in the 40 measurement points using MLS sound source signal in 4 different sound source points. The results show the even distribution of sound levels within the 2.0dB of difference among all seats. The reverberation time of 1.66sec was measured which is similar to the objective value of 1.65 sec in empty states. It was also found that average C80 values lie in the objective extents of C80 from -1 to 3dB and average D50 value of 54 was measured. Thus, it is concluded that the hall can be used as a multi-purpose hall with a suitable acoustic conditions.

Effect of Acoustic Reflector's Surface Density on Sound Absorption Characteristics and Stage Acoustics (음향 반사판의 밀도별 흡음특성 및 무대음향에의 영향)

  • Kim, Young-Sun;Jeong, Jeong-Ho;Jeon, Jin-Yong;Kim, Myeong-Seok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.5
    • /
    • pp.429-436
    • /
    • 2012
  • In concert halls and auditoriums, acoustic reflector and stage enclosure is one of the main factors on the room and stage acoustic characteristics. As a stage enclosure and acoustic reflector honey comb based light-weight reflector is widely used, because it is easy to install. However, there was not enough research on the surface density effect on room and stage acoustics. In this study, sound absorption coefficient tests on three kinds of wooden acoustic reflectors with different surface density were conducted. Surface density of acoustic reflector was changed from 11 kg/$m^2$ to 41 kg/$m^2$. For the low frequency excitation, sub-woofer was used with omnidirectional loud-speaker simultaneously. From the experiments, it was found that sound absorption coefficient below 250 Hz band was decrease by the increment of surface density. In order to check the influence of the surface density on room and stage acoustic parameters, room acoustic simulation was conducted with sound absorption coefficients, which were tested in reverberation chamber. By the increment of surface density of acoustic reflector, RT(reverberation time) and EDT(early decay time) were increased. Also, ST(stage support) was improved in low frequency bands.

A study on development of simulation model of Underwater Acoustic Imaging (UAI) system with the inclusion of underwater propagation medium and stepped frequency beam-steering acoustic array

  • L.S. Praveen;Govind R. Kadambi;S. Malathi;Preetham Shankpal
    • Ocean Systems Engineering
    • /
    • v.13 no.2
    • /
    • pp.195-224
    • /
    • 2023
  • This paper proposes a method for the acoustic imaging wherein the traditional requirement of the relative movement between the transmitter and target is overcome. This is facilitated through the beamforming acoustic array in the transmitter, in which the target is illuminated by the array at various azimuth and elevation angles without the physical movement of the acoustic array. The concept of beam steering of the acoustic array facilitates the formation of the beam at desired angular positions of azimuth and elevation angles. This paper substantiates that the combination of illumination of the target from different azimuth and elevation angles with respect to the transmitter (through the beam steering of beam forming acoustic array) and the beam steering at multiple frequencies (through SF) results in enhanced reconstruction of images of the target in the underwater scenario. This paper also demonstrates the possibility of reconstruction of the image of a target in underwater without invoking the traditional algorithms of Digital Image Processing (DIP). This paper comprehensively and succinctly presents all the empirical formulae required for modelling the acoustic medium and the target to facilitate the reader with a comprehensive summary document incorporating the various parameters of multi-disciplinary nature.

Analysis of a fixed source-to-receiver underwater acoustic communication channel parameters in shallow water (송수신기가 고정된 천해 수중음향통신 채널 매개변수 해석)

  • Bae, Minja;Park, Jihyun;Yoon, Jong Rak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.5
    • /
    • pp.494-510
    • /
    • 2019
  • Underwater acoustic communication channel parameters consist of impulse response, delay spreading, scattering function, coherence bandwidth, frequency selective fading, coherence time and time variant magnitude fading statistics on which communication system modem and channel coding are designed. These parameters are influenced by sound velocity profile, platform motion and sea surface roughness in given acoustical oceanography condition. In this paper, channel model based on phasor, channel simulator, measurement and analysis method of channel parameters are given in a fixed source-to-receiver system and the parameters are analyzed using shallow water experimental data. For two different source-to-receiver ranges of 300 m and 600 m, the parameters are characterized by three multipaths such as a direct, a surface reflection path with time variant scattering and a bottom reflection path. The results present a channel modelling method of a fixed source source-to-receiver system, channel parameters measurement and analysis methods and a system design and performance assessment method in shallow water.

Analysis of Resonance Characteristics of Bulk Acoustic Resonator with Acoustic Bragg Reflector for Biosensor Development (바이오센서 개발을 위한 음향 브래그 반사층을 가지는 체적탄성파 공진기의 공진특성 분석)

  • Kim, Hee-Young;Kim, Ki-Bok;Ha, Tae-Hoon;Kim, Yong-Il;Lee, Jin-Min;Kim, Man-Soo
    • Journal of Biosystems Engineering
    • /
    • v.34 no.4
    • /
    • pp.260-268
    • /
    • 2009
  • As a basic study to develop a high sensitive biosensor using film bulk acoustic resonator, the mathematical model for analyzing the resonance characteristics of bulk acoustic resonator with acoustic Bragg reflectors was investigated. The simulation results due to the number of acoustic Bragg reflectors with low and high acoustic impedance materials were compared with the experimental results for 1, 2.25 and 5 MHz of PZT based bulk acoustic resonators with various acoustic Bragg reflectors. At the fabricated bulk acoustic resonator with an odd number of acoustic Bragg reflectors, low and high acoustic impedance materials in sequence under the bottom electrode showed better resonance characteristics than even number of acoustic Bragg reflectors. The changes of resonance frequencies due to the increase of number of acoustic Bragg reflectors by simulation and experiment, respectively showed approximately similar tendency but some differences in input impedance between the experiment and simulation were found. The derived mathematical model for describing the resonance characteristics of the bulk acoustic resonator with acoustic Bragg reflector will be available for analyzing the design parameters for development of biosensor using bulk acoustic resonator.

Acoustic Analysis and Design of a Direct-Radiator-Type Loudspeaker (직접방사형 스피커의 음향특성 해석및 설계)

  • 김준태;김정호;김진오
    • Journal of KSNVE
    • /
    • v.8 no.2
    • /
    • pp.274-282
    • /
    • 1998
  • A systematic procedure for designing a direct-radiator-type loudspeaker has been developed, based on the numerical vibro-acoustic analysis and the Taguchi method. The finite-element model of the speaker cone has been used to calculated the vibration response of the cone excited by the voice coil. The vibration displacement of the speaker cone has been converted into the vibration velocity and used as a boundary condition for the acoustic analysis. The acoustic frequency characteristics of the loudspeaker have been calculated by the boundary element method. The numerical results have been verified by the experiments carried out in an anechoic chamber. Some design parameters have been selected by using the Taguchi method, and the variations of the acoustic characteristics due to the changes of the parameter values have been examined using the numerical model.

  • PDF

Backhole as an Acoustic Damper for the Swirl Injector (스월 인젝터의 음향학적 감쇄기로서의 백홀에 대한 연구)

  • 황성하;윤영빈
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.153-156
    • /
    • 2003
  • Backhole, which is one of geometric parameters in swirl coaxial injectors, is found to affect the inner flow motion and the acoustic characteristics of the swirl injector. In order to analyze the effect of the backhole as a damping device such as acoustic cavities of the combustion chamber, it was regarded as a Helmholtz or Quarter-wave resonator. As a result, it is known that the swirl coaxial injector with the backhole may produce the resonant frequency coincided with the frequency of the combustion chamber.

  • PDF

Acoustic Performance Study of FRP Acoustic Window (FRP 음향창의 음향성능 설계기법 연구)

  • Seo, Young-Soo;Kang, Myeng-Whan;Shin, Ku-Kyun;Jeon, Jae-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.10
    • /
    • pp.890-896
    • /
    • 2011
  • For developing acoustic window, transmission loss in accordance with incident angle was calculated and compared with measurement results. In design stage, the material choice of acoustic window is very important because the material is one of main parameters of transmission loss and structural strength. In order to analyze the effect of material properties on transmission loss, the parametric studies were carried out and the results were discussed in this paper. And, to verify the design specification of acoustic window, measurement was carried out and the results were compared and analyzed.

Study on the Real-Time Leak Monitoring Technique for Power Plant Valves (발전용 밸브누설 실시간 감시기술 연구)

  • Lee, S.G.
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.39-44
    • /
    • 2007
  • The purpose of this study is to verify availability of the acoustic emission in-situ monitoring method to the internal leak and operating conditions of the major valves at nuclear power plants. In this study, acoustic emission tests are performed when the pressurized temperature water and steam flowed through glove valve(main steam dump valve) and check valve(main steam outlet pump check valve) on the normal size of 12 and 18". The valve internal leak monitoring system for practical field was designed. The acoustic emission method was applied to the valves at the site, and the background noise was measured for the abnormal plant condition. To improve the reliability, a judgment of leak on the system was used various factors which are AE parameters, trend analysis, frequency analysis, voltage analysis and amplitude analysis of acoustic signal emitted from the valve operating condition internal leak.

  • PDF