DOI QR코드

DOI QR Code

Analysis of a fixed source-to-receiver underwater acoustic communication channel parameters in shallow water

송수신기가 고정된 천해 수중음향통신 채널 매개변수 해석

  • Received : 2019.04.18
  • Accepted : 2019.08.09
  • Published : 2019.09.30

Abstract

Underwater acoustic communication channel parameters consist of impulse response, delay spreading, scattering function, coherence bandwidth, frequency selective fading, coherence time and time variant magnitude fading statistics on which communication system modem and channel coding are designed. These parameters are influenced by sound velocity profile, platform motion and sea surface roughness in given acoustical oceanography condition. In this paper, channel model based on phasor, channel simulator, measurement and analysis method of channel parameters are given in a fixed source-to-receiver system and the parameters are analyzed using shallow water experimental data. For two different source-to-receiver ranges of 300 m and 600 m, the parameters are characterized by three multipaths such as a direct, a surface reflection path with time variant scattering and a bottom reflection path. The results present a channel modelling method of a fixed source source-to-receiver system, channel parameters measurement and analysis methods and a system design and performance assessment method in shallow water.

수중음향통신시스템의 모뎀이나 채널 코딩 설계를 위한 채널 매개변수는 임펄스 응답, 지연 확산, 산란함수, 도플러 확산, 상관 대역폭, 주파수 선택적 페이딩, 상관 시간 및 시변 진폭 페이딩의 통계적 분포 함수 등이다. 이들 매개 변수들은 주어진 해양 음향 조건에서 수층의 음속 구조, 플렛폼의 운동이나 해면의 거칠기에 영향을 받는다. 본 논문에서는 송수신기 고정 천해 수중음향통신 채널에 대한 페이저 기반의 채널 모델과 모의실험 및 채널 매개변수들의 측정과 분석 방법을 제시하고 천해의 실험 자료를 이용하여 이들 매개변수들을 해석하였다. 송수신기 거리가 300 m와 600 m에 대한 이들 매개 변수들은 직접파, 산란 성분을 갖는 해면 반사파 및 해저 반사파로 구성되는 3개 다중 경로에 의해 그 특징이 결정됨을 보인다. 연구의 결과는 천해 고정 시스템의 채널 모델 방법, 채널 매개변수들의 측정과 분석 방법 및 시스템 설계와 성능평가 방법을 제시한다.

Keywords

References

  1. B. Sklar, Mobile Communication Handbook (Boca Raton FL: CRC Press LLC, Boca Raton FL, 1999), Chapter 8.
  2. M. Bae, J. Park, J. Kim, D. Xue, K. C. Park, and J. R. Yoon, "Frequency-selective fading statistics of shallowwater acoustic communication channel with a few multipaths," Jpn. J. Appl. Phys. 55, 07KG031-7 (2016).
  3. M. Stojanovic and J. Preisig, "Underwater acoustic communication channels: Propagation models and statistical characterization," IEEE Commun. Mag. 47, 84-89 (2009). https://doi.org/10.1109/MCOM.2009.4752682
  4. T. C. Yang, " Measurements of temporal coherence of sound transmissions through shallow water," J. Acoust. Soc. Am. 120, 2595-2614 (2006). https://doi.org/10.1121/1.2345910
  5. B. Borowski, "Characterization of a very shallow water acoustic communication channel," Proc. MTS/IEEE OCEANS'9 Conference (IEEE, Biloxi), 1-10 (2009).
  6. T. C. Yang, "Properties of underwater acoustic communication channels in shallow water," J. Acoust. Soc. Am. 131, 129-145 (2012). https://doi.org/10.1121/1.3664053
  7. P. A. van Walree, "Propagation and scattering effects in underwater acoustic communication channels," IEEE Ocean. Eng. 38, 614-631 (2013). https://doi.org/10.1109/JOE.2013.2278913
  8. Y. Kim, J. An, H. Lee, S. Lee, and J. Chung, "Analysis of underwater acoustic communication channel environment in Kyungcheon Lake" (in Korean), J. Acoust. Soc. Kr. 38, 1-8 (2019).
  9. C. Seo, J. Park, K. C. Park, and J. R. Yoon, "Performance comparison of convolution and Reed-Solomon codes in underwater multipath fading channel," Jpn. J. Appl. Phys. 53, 07KG021-3 (2014).
  10. X. Dandan, C. Seo, J. Park, and J. R. Yoon, "Impact of surface scattering on performance of QPSK," J. Korea Inst. Inf. Commun. Eng. 19, 1818-1826 (2014). https://doi.org/10.6109/jkiice.2015.19.8.1818
  11. J. Kim, J. Park, M. Bae, K. C. Park, and J. R. Yoon, "Effect of frequency dependent multipath fading on non-coherent underwater communication system," J. Acoust. Soc. Kr. 35, 295-302 (2016). https://doi.org/10.7776/ASK.2016.35.4.295
  12. D. B. Kilfoyle and A. B. Baggeroer, "The state of the art in underwater acoustic telemetry," IEEE Ocean. Eng. 25, 4-27 (2000). https://doi.org/10.1109/48.820733
  13. M. Siderius, M. B. Poter, P. Hursky, V. McDonald, and the KauaiEx Group, "Effects of ocean thermocline variability on noncoherent underwater acoustic communications," J. Acoust. Soc. Am. 121, 1895-1908 (2007). https://doi.org/10.1121/1.2436630
  14. H. Medwin and C. S. Clay, Fundamentals of Acoustical Oceanography (Academic Press, New York, 1997), Chapter 13.
  15. R. H. Stewart, Introduction to Physical Oceanography (Texas Agricultural and Mechanical University, College Station, Texas, 2007), pp. 285.
  16. J. G. Proakis and M. Salehi, Digital Communications, 5th Ed. (McGraw-Hill, New York, 2014), Chaper 13.
  17. R. J. Urick, Principles of Underwater Sound, 3rd Ed. (McGraw-Hill, New York, 1983), Chapter 5, pp. 143.