• Title/Summary/Keyword: Acoustic Signal Recognition

Search Result 71, Processing Time 0.023 seconds

Pattern Recognition for the Target Signal Using Acoustic Scattering Feature Parameter (표적신호 음향산란 특징파라미터를 이용한 패턴인식에 관한 연구)

  • 주재훈;신기철;김재수
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.93-100
    • /
    • 2000
  • Target signal feature parameters are very important to classify target by active sonar. Two highly correlated broad band pulses separated by time T have a time separation pitch(TSP) of 1/T Hz which is equal to the trough-to-trough or peak-to-peak spacing of its spectrum. In this study, TSP informations which represent feature of each target signal were effectively extracted by the FFT. The extracted TSP feature parameters were also applied to the pattern recognition algorithm to classify target and to analyze their properties.

  • PDF

Robust Endpoint Detection for Bimodal System in Noisy Environments (잡음환경에서의 바이모달 시스템을 위한 견실한 끝점검출)

  • 오현화;권홍석;손종목;진성일;배건성
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.5
    • /
    • pp.289-297
    • /
    • 2003
  • The performance of a bimodal system is affected by the accuracy of the endpoint detection from the input signal as well as the performance of the speech recognition or lipreading system. In this paper, we propose the endpoint detection method which detects the endpoints from the audio and video signal respectively and utilizes the signal to-noise ratio (SNR) estimated from the input audio signal to select the reliable endpoints to the acoustic noise. In other words, the endpoints are detected from the audio signal under the high SNR and from the video signal under the low SNR. Experimental results show that the bimodal system using the proposed endpoint detector achieves satisfactory recognition rates, especially when the acoustic environment is quite noisy.

Feature Compensation Combining SNR-Dependent Feature Reconstruction and Class Histogram Equalization

  • Suh, Young-Joo;Kim, Hoi-Rin
    • ETRI Journal
    • /
    • v.30 no.5
    • /
    • pp.753-755
    • /
    • 2008
  • In this letter, we propose a new histogram equalization technique for feature compensation in speech recognition under noisy environments. The proposed approach combines a signal-to-noise-ratio-dependent feature reconstruction method and the class histogram equalization technique to effectively reduce the acoustic mismatch present in noisy speech features. Experimental results from the Aurora 2 task confirm the superiority of the proposed approach for acoustic feature compensation.

  • PDF

A Novel Integration Scheme for Audio Visual Speech Recognition

  • Pham, Than Trung;Kim, Jin-Young;Na, Seung-You
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.8
    • /
    • pp.832-842
    • /
    • 2009
  • Automatic speech recognition (ASR) has been successfully applied to many real human computer interaction (HCI) applications; however, its performance tends to be significantly decreased under noisy environments. The invention of audio visual speech recognition (AVSR) using an acoustic signal and lip motion has recently attracted more attention due to its noise-robustness characteristic. In this paper, we describe our novel integration scheme for AVSR based on a late integration approach. Firstly, we introduce the robust reliability measurement for audio and visual modalities using model based information and signal based information. The model based sources measure the confusability of vocabulary while the signal is used to estimate the noise level. Secondly, the output probabilities of audio and visual speech recognizers are normalized respectively before applying the final integration step using normalized output space and estimated weights. We evaluate the performance of our proposed method via Korean isolated word recognition system. The experimental results demonstrate the effectiveness and feasibility of our proposed system compared to the conventional systems.

Interference Suppression Using Principal Subspace Modification in Multichannel Wiener Filter and Its Application to Speech Recognition

  • Kim, Gi-Bak
    • ETRI Journal
    • /
    • v.32 no.6
    • /
    • pp.921-931
    • /
    • 2010
  • It has been shown that the principal subspace-based multichannel Wiener filter (MWF) provides better performance than the conventional MWF for suppressing interference in the case of a single target source. It can efficiently estimate the target speech component in the principal subspace which estimates the acoustic transfer function up to a scaling factor. However, as the input signal-to-interference ratio (SIR) becomes lower, larger errors are incurred in the estimation of the acoustic transfer function by the principal subspace method, degrading the performance in interference suppression. In order to alleviate this problem, a principal subspace modification method was proposed in previous work. The principal subspace modification reduces the estimation error of the acoustic transfer function vector at low SIRs. In this work, a frequency-band dependent interpolation technique is further employed for the principal subspace modification. The speech recognition test is also conducted using the Sphinx-4 system and demonstrates the practical usefulness of the proposed method as a front processing for the speech recognizer in a distant-talking and interferer-present environment.

Study on the Recognition of Spoken Korean Continuous Digits Using Phone Network (음성망을 이용한 한국어 연속 숫자음 인식에 관한 연구)

  • Lee, G.S.;Lee, H.J.;Byun, Y.G.;Kim, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.624-627
    • /
    • 1988
  • This paper describes the implementation of recognition of speaker - dependent Korean spoken continuous digits. The recognition system can be divided into two parts, acoustic - phonetic processor and lexical decoder. Acoustic - phonetic processor calculates the feature vectors from input speech signal and the performs frame labelling and phone labelling. Frame labelling is performed by Bayesian classification method and phone labelling is performed using labelled frame and posteriori probability. The lexical decoder accepts segments (phones) from acoustic - phonetic processor and decodes its lexical structure through phone network which is constructed from phonetic representation of ten digits. The experiment carried out with two sets of 4continuous digits, each set is composed of 35 patterns. An evaluation of the system yielded a pattern accuracy of about 80 percent resulting from a word accuracy of about 95 percent.

  • PDF

Speech Activity Detection using Lip Movement Image Signals (입술 움직임 영상 선호를 이용한 음성 구간 검출)

  • Kim, Eung-Kyeu
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.4
    • /
    • pp.289-297
    • /
    • 2010
  • In this paper, A method to prevent the external acoustic noise from being misrecognized as the speech recognition object is presented in the speech activity detection process for the speech recognition. Also this paper confirmed besides the acoustic energy to the lip movement image signals. First of all, the successive images are obtained through the image camera for personal computer and the lip movement whether or not is discriminated. The next, the lip movement image signal data is stored in the shared memory and shares with the speech recognition process. In the mean time, the acoustic energy whether or not by the utterance of a speaker is verified by confirming data stored in the shared memory in the speech activity detection process which is the preprocess phase of the speech recognition. Finally, as a experimental result of linking the speech recognition processor and the image processor, it is confirmed to be normal progression to the output of the speech recognition result if face to the image camera and speak. On the other hand, it is confirmed not to the output the result of the speech recognition if does not face to the image camera and speak. Also, the initial feature values under off-line are replaced by them. Similarly, the initial template image captured while off-line is replaced with a template image captured under on-line, so the discrimination of the lip movement image tracking is raised. An image processing test bed was implemented to confirm the lip movement image tracking process visually and to analyze the related parameters on a real-time basis. As a result of linking the speech and image processing system, the interworking rate shows 99.3% in the various illumination environments.

A study on the PD detecting of C-GIS using AE sensor (AE센서를 이용한 C-GIS의 부분방전 검출에 관한 연구)

  • Lee, H.Y.;Lee, Y.H.;Sin, Y.S.;Seo, J.M.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1659-1661
    • /
    • 2003
  • Recently, diagnostic techniques have been investigated to defect a partial discharge in high voltage electrical equipment. We have studied the characteristics of the acoustic partial discharge originating from the electrical defects in cubicle GIS(C-GIS). An acoustic emission(AE) sensor is used on the enclosure to detect partial discharge source because the sensor is sensitive to stress waves in its frequency range that may not be from a partial discharge source. AE signal is analyzed with phase-magnitude-frequency number(${\Phi}$-V-n) and pulse per second(PPS). Experience result has shown that the omitted acoustic signal has phase dependency and phase shift characteristic according to increase with applied voltage. These result will be helpful to the pattern recognition of the acoustic partial discharge in a C-GIS.

  • PDF

Speech emotion recognition based on genetic algorithm-decision tree fusion of deep and acoustic features

  • Sun, Linhui;Li, Qiu;Fu, Sheng;Li, Pingan
    • ETRI Journal
    • /
    • v.44 no.3
    • /
    • pp.462-475
    • /
    • 2022
  • Although researchers have proposed numerous techniques for speech emotion recognition, its performance remains unsatisfactory in many application scenarios. In this study, we propose a speech emotion recognition model based on a genetic algorithm (GA)-decision tree (DT) fusion of deep and acoustic features. To more comprehensively express speech emotional information, first, frame-level deep and acoustic features are extracted from a speech signal. Next, five kinds of statistic variables of these features are calculated to obtain utterance-level features. The Fisher feature selection criterion is employed to select high-performance features, removing redundant information. In the feature fusion stage, the GA is is used to adaptively search for the best feature fusion weight. Finally, using the fused feature, the proposed speech emotion recognition model based on a DT support vector machine model is realized. Experimental results on the Berlin speech emotion database and the Chinese emotion speech database indicate that the proposed model outperforms an average weight fusion method.

Speech Activity Decision with Lip Movement Image Signals (입술움직임 영상신호를 고려한 음성존재 검출)

  • Park, Jun;Lee, Young-Jik;Kim, Eung-Kyeu;Lee, Soo-Jong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.25-31
    • /
    • 2007
  • This paper describes an attempt to prevent the external acoustic noise from being misrecognized as the speech recognition target. For this, in the speech activity detection process for the speech recognition, it confirmed besides the acoustic energy to the lip movement image signal of a speaker. First of all, the successive images are obtained through the image camera for PC. The lip movement whether or not is discriminated. And the lip movement image signal data is stored in the shared memory and shares with the recognition process. In the meantime, in the speech activity detection Process which is the preprocess phase of the speech recognition. by conforming data stored in the shared memory the acoustic energy whether or not by the speech of a speaker is verified. The speech recognition processor and the image processor were connected and was experimented successfully. Then, it confirmed to be normal progression to the output of the speech recognition result if faced the image camera and spoke. On the other hand. it confirmed not to output of the speech recognition result if did not face the image camera and spoke. That is, if the lip movement image is not identified although the acoustic energy is inputted. it regards as the acoustic noise.