• Title/Summary/Keyword: Acoustic Resonance Phenomenon

Search Result 40, Processing Time 0.037 seconds

Analysis of Acoustic Excitation Effect on Lean Blowoff in Premixed Bluff Body Flames (예혼합 보염기 화염의 희박 화염 날림에 음향 가진이 미치는 영향에 관한 연구)

  • Jeong, Chanyeong;Hwang, Jeongjae;Yoon, Jisu;Kim, Taesung;Shin, Jeoik;Yoon, Youngbin
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.149-151
    • /
    • 2014
  • The blowoff phenomenon was experimentally investigated in a ducted combustor according to the acoustic excitation. The blowoff equivalence ratio rapidly increases at specific acoustic excitation frequencies. A resonance phenomenon occurs when the excitation frequency approaches the harmonic frequency of the combustor. The resonance increases the velocity fluctuation in the combustor and the infiltration velocity of the unburned gas in the shear layer. Consequently, the mixture velocity exceeds the burning velocity and the blowoff occurs at the higher equivalence ratio.

  • PDF

The Characteristic of Friction-Factor on Honeycomb Surfaces (Part II : Friction-Factor Jump Phenomenon) (허니콤 표면의 마찰계수 특성에 관한 연구 (Part 2 : 마찰계수 급상승현상에 관한 고찰))

  • 하태웅
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1439-1447
    • /
    • 1994
  • Test results of friction-factor for the flow of air in a narrow channel lined with various honeycomb geometries show that, generally, the friction-factor is nearly constant or slightly decreases as the Reynolds number(or Mach number) increases, a characteristic common to turbulent flow in pipes. However, in some test geometries this trend is remarkably different. The friction factor dramatically drops and then rises as the Mach number increases. This phenomenon can be characterized as a "friction-factor jump." Further investigations of the acoustic spectrum indicate that the "friction-factor jump" phenomenon is accompanied by an onset of a normal mode resonance excited coherent flow fluctuation structure, which occurs at Reynolds number of the order of $10^4$. New empirical friction-factor model for "friction-factor jump" cases is developed as a function of Mach number and local pressure.ach number and local pressure.

Development of Simulator to Electronic Ballast for HID Lamp (HID Lamp용 전자식 안정기의 시뮬레이터 개발)

  • 장목순;조계현;조호찬;박종연
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.2
    • /
    • pp.1-8
    • /
    • 2002
  • The electronic ballast have much more shaking of arc than magnetic ballast because of acoustic resonance phenomenon. but it has used mare than before. In this paper, we made metal halide lamp modeling by modifying modeling of mercury lamp. To avoid acoustic resonance phenomenon, We calculated acoustic resonance frequency band. We proposed design of LCC circuit. Also, electronic ballast simulator for metal halide lamp was developed by simulink LCC parameters of inverter was decided on the basis of simulation results. After development of prototype ballast, it was verified the characteristics of simulator.

A Study on the Structural-acoustic Analysis Modeling Methods of the Room with Heavy Impact Noise Source (중량충격원 충격에 따른 공동주택 실내공간의 구조음장 해석 모델링방법에 관한 연구)

  • Lee, Jae-Kwang;Koo, Hae-Shik
    • KIEAE Journal
    • /
    • v.9 no.6
    • /
    • pp.81-87
    • /
    • 2009
  • The purpose of the present study is to establish structural noise analyzing method for apartments building floor with structural-acoustic coupling analysis modeling. Noise through floor in the room is recognized as a significant problem with the consequence that noise isolation technique has been studied in the various fields of industry. From among noise factors, resonance sound is the main reason for solid noise of the floor, which is occurred by mechanical vibrations of the acoustic boundary line and the change of velocity. To analyse this phenomenon, numerical computation methods are provided in many fields, In this study, evaluation method for slab is established using finite element method, and a case study for analyzing acoustic phenomenon was suggested. The results show that numerical method, especially F.E.M, has a good approximation to predict noise at floors.

Electronic Ballast with Constant Power Output Controller for 250W MH Lamp

  • Jung Dong-Youl;Park Jong-Yeon
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.332-337
    • /
    • 2006
  • In this paper, an electronic ballast was developed to control a 250W metal halide lamp. To avoid acoustic resonance phenomenon, we calculated the acoustic resonance band and determined the driving frequency from 70kHz to 100kHz. Due to the switching loss of MOSFET, many problems are caused in the inverter circuit during lamp lighting, so we reduced the loss by connecting the capacitor that minimizes the magnitude of the impulsive voltage. In this paper, the main point of research is to find the methods to operate the lamp on the rated output power. After detecting the current and the voltage of the lamp, we changed the driving frequency by adjusting the DC voltage level of the VCO input.

The Property Analysis of Ceramic Metal-Halide Lamp Considering Acoustic Resonance Phenomenon and Design of Inverter by the PSpice Simulation (음향 공명 현상을 고려한 세라믹 메탈핼라이드의 특성 분석과 PSpice 시뮬레이션을 통한 인버터 설계)

  • Jang, Hyeok-Jin;Kim, Nam-Goon;Yang, Jong-Kyung;Lee, Jong-Chan;Park, Dae-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1989-1994
    • /
    • 2009
  • This study purposes are improvement of system (lamp & ballast) efficacy with and optical characteristics through the developed ceramic arc tube. The designed electronic ballast is substituted for conventional magnetic ballast. These electric signal and optical, thermal characteristics through the improving efficacy of lighting system compared with conventional magnetic ballast. properties of lamp by driving method is researching in ballast. Particularly, electronic ballasts, which improved against weakness of Magnetic Ballast, are researching and applying to control of ceramic metal-halide lamp. but One major limitation is the acoustic resonance problem in CMH lamps at high-frequency operation. In order to avoid acoustic resonance, driving frequency decided 21[kHz]. Before discharge in this paper. The PSpice simulation result obtained sufficient voltage gain and the ignition voltage obtained over 3[kV] at 75[kHz]. After discharge, driving voltage obtained approximately 90[Vrms] at 21[kHz].

Abnormal Resonance Noise Phenomenon and Effect through Exhaust Gas Passageway in Urban Combined Power Plant (도심지 복합화력 배가스 통로에서의 이상 소음 현상과 영향)

  • Kim, Yeon-Whan;Lee, Young-Shin;Bae, Yong-Chae;Lee, Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.866-869
    • /
    • 2004
  • Power transformers, air-intakes and stacks in the urban combined power plant are main noisy sources. Because of Inhabitant complaint by abnormal noise transferred from the power plant. the noise was investigated at power plant and uptown area. The result of diagnosis made the acoustic resonance phenomenon by 580Hz's combustion dynamic pressure with the standing wave mode of sound fields in exhaust passageway of gas turbine into main noise source of public complain. The abnormal noise is caused by the resonance exhaust noise transferred through stacks of power plant.

  • PDF

A Study of Combustion Instability Mode according to the Variation of Combustor Length in Dual Swirl Gas Turbine Model Combustor (연소실 길이에 따른 이중선회 가스터빈 모델 연소기에서 연소불안정 모드 연구)

  • Jang, Munseok;Lee, Keeman
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.2
    • /
    • pp.29-37
    • /
    • 2016
  • This study described the experimental investigations of combustion instability in a model gas turbine combustor. Strong coupling between pressure oscillations and unsteady heat release excites a self-sustained acoustic wave, which results in a loud and annoyed sound, and may also lead to a structural damage to the combustion system. In this study, in order to examine the combustion instability phenomenon of a dual swirling combustor configuration, the information of heat release and pressure fluctuation period with respect to the variation in both thermal power and combustor length was collected experimentally. As a result, the fundamental acoustic frequency turned out to increase with the increasing thermal power without respect to the combustor length. The frequency response to the combustor length was found to have two distinct regimes. In a higher power regime the frequency significantly decreases with the combustor length, as it is expected from the resonance of gas column. However, in a lower power regime it is almost insensitive to the combustor length. This insensitive response might be a result of the beating phenomenon between the interacting pilot and main flames with different periods.

Electronic Ballast for Metal Halide Lamps Using High Frequency Modulation Method (고주파 변조방법을 이용한 메탈할라이드 램프용 전자식 안정기)

  • 오덕진;문태환;조규민;김희준
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.5
    • /
    • pp.438-445
    • /
    • 2001
  • This paper presents a high frequency modulation electronic ballast for the metal halide lamp. As the proposed ballast operates in high frequency ranges and can start up the lamp using the LC resonant circuit without external igniter, the proposed ballast is very compact and has a good efficiency in comparison with the conventional low frequency electronic ballast. The proposed ballast is controlled with the modulated frequency in the range of 20kHz to 100kHz in order to avoid the acoustic resonance phenomenon. In this paper, a new realtime acoustic resonance detection method is proposed to evaluate the characteristics of the ballast. The no load protection algorithm and power control algorithm through the detection of the DC link current are described. Finally, the experimental results on the proto-type ballast of 150w metal halide lamp with the proposed methods are discussed.

  • PDF

Study on Noise Characteristic of Open Cavity with Cross-Correlation Analysis (Cross-Correlation 해석을 통한 공동의 소음 특성 연구)

  • Heo Dae Nyoung;Kim Jae Wook;Lee Duck Joo
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.755-758
    • /
    • 2002
  • The physical phenomena of rectangular open cavity are numerically investigated in this paper Two-dimensional cavity problems with laminar boundary layers in upstream are simulated by using the compressible Wavier-Stokes equations. The high-order and high-resolution numerical schemes are used for the evaluation of spatial derivatives and the time integration. Cross-correlation is used to analyze the characteristics of wave propagation along time and spatial. Sudden phase shifting of 90 degrees is appeared near downstream edge, and this is coincident with the phase lag suggested in original Rossiter's equation. The results give a further understanding of the physical phenomenon of noise generation, and the resonance of flow and acoustic in cavity. Moreover, modified Rossiter's equation, which is more accurate and can be applied in various conditions, is suggested. The distance from the point of vortex generation to the point of vortex collapsing acts as effective distance of cavity resonance, and the phase difference between the point of vortex collapsing and the point of acoustic source acts as phase lag. The mechanism of acoustic generation is fully understood in this paper. The mechanism of acoustic generation is fully understood in this paper.

  • PDF