• Title/Summary/Keyword: Acoustic Pressure Field

Search Result 254, Processing Time 0.026 seconds

Numerical and Experimental Investigation on Structure-acoustic Coupling Effect in a Reverberant Water Tank (잔향수조의 구조-음향 연성효과에 관한 수치 및 실험적 고찰)

  • Park, Yong;Kim, Kookhyun;Cho, Dae-Seung;Lee, Jong-Ju
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.1
    • /
    • pp.94-101
    • /
    • 2019
  • Underwater acoustic power should be measured in a free field, but it is not easy to implement. In practice, the measurement could be performed in a reverberant field such as a water-filled steel tank and concrete tank. In this case, the structure and the acoustic field are strongly or weakly coupled according to material properties of the steel and water. So, characteristics of the water tank must be investigated in order to get the accurate underwater acoustic power. In detail, modal frequencies, mode shapes of the structure and frequency response functions of the acoustic field could represent the characteristics of the reverberant water tank. In this paper, the structure-acoustic coupling has been investigated on a reverberant water tank numerically and experimentally. The finite element analysis has been carried out to estimate the structural and acoustical modal parameters under the dry and water-filled conditions, respectively. In order to investigate the structure-acoustic coupling effect, the numerical analysis has been performed according to the structure stiffness change of the water tank. The acoustic frequency response functions were compared with the numerical analysis and acoustic exciting test. From the results, the structural modal frequencies of the water-filled condition have been decreased compared to those of the dry condition in the low frequency range. The acoustic frequency response functions under the coupled boundary conditions showed different patterns from those under the ideal boundary conditions such as the pressure release and rigid boundary condition, respectively.

An Analysis of the Flow and Sound Field of a Ducted Axial Fan (덕트가 있는 축류홴의 유동 및 음향장 해석)

  • Jeon, Wan Ho;Chung, Ki Hoon;Lee, Duck Joo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.2 s.7
    • /
    • pp.15-23
    • /
    • 2000
  • The present work describes the prediction method for the unsteady flow field and the acoustic pressure field of a ducted axial fan. The prediction method is comprised of time-marching free-wake method, acoustic analogy, and the Kirchhoff-Helmholtz BEM. The predicted sound signal of a rotor is similar to the experiment one. We assume that the rotor rotates with a constant angular velocity and the flow field around the rotor is incompressible and inviscid. Then, a time-marching free-wake method is used to model the fan and to calculate the flow field. The force of each element on the blade is calculated by the unsteady Bernoulli equation. Lowson's method is used to predict the acoustic source. The newly developed Helmholtz-Kirchhoff BEM lot thin body is used to calculate tile sound field of the ducted fan. The ducted fan with 6 blades is analysed and the sound field around the duct is calculated.

  • PDF

Multi-Domain Structural-Acoustic Coupling Analysis Using the Finite Element and Boundary Element Techniques

  • Ju, Hyeon-Don;Lee, Shi-Bok
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.555-561
    • /
    • 2001
  • A new approach to analyze the multi-domain acoustic system divided and enclosed by flexible structures is presented in this paper. The boundary element formulation of the Helmholtz integral equation is used for the internal fields and the finite element formulation for the structures surrounding the fields. We developed a numerical analysis program for the structural-acoustic coupling problems of the multi-domain system, in which boundary conditions such as the continuity of normal particle velocity and sound pressure in the structural interfaces between Field 1 and Field 2 are not needed. The validity of the numerical analysis program is verified by comparing the numerical results with the experimental ones. Example problems are included to investigate the characteristics of the coupled multi-domain system.

  • PDF

A study on the identification of dynamic characteristics of tennis racket by acoustic intensity method (음향 인텐시터법을 이용한 테니스 라켓의 동특성에 관한 연구)

  • 오재응;이유엽;염성하
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.5
    • /
    • pp.601-610
    • /
    • 1986
  • The acoustic intensity in the very near field of a vibrating surface reveals information about the location of sound sources and sinks. A system model of tennis racket was developed from simultaneous measurement of excitation force, surface vibration and the near field sound pressure. The characteristics of structural dynamics were obtained by standard experimental modal analysis techniques while the sound radiation characteristics were determined by estimating the acoustic intensity. In this paper, the information about vibration behviour was obtained by acoustic intensity method and some, experiments for verification were carried out. Close correlation was found between experimentally determined acoustic intensity and vibration mode patterns of the tennis racket.

Fast Evaluation of Sound Radiation by Vibrating Structures with ACIRAN/AR

  • Migeot, Jean-Louis;Lielens, Gregory;Coyette, Jean-Pierre
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.561-562
    • /
    • 2008
  • The numerical analysis of sound radiation by vibrating structure is a well known and mature technology used in many industries. Accurate methods based on the boundary or finite element method have been successfully developed over the last two decades and are now available in standard CAE tools. These methods are however known to require significant computational resources which, furthermore, very quickly increase with the frequency of interest. The low speed of most current methods is a main obstacle for a systematic use of acoustic CAE in industrial design processes. In this paper we are going to present a set of innovative techniques that significantly speed-up the calculation of acoustic radiation indicators (acoustic pressure, velocity, intensity and power; contribution vectors). The modeling is based on the well known combination of finite elements and infinite elements but also combines the following ingredients to obtain a very high performance: o a multi-frontal massively parallel sparse direct solver; o a multi-frequency solver based on the Krylov method; o the use of pellicular acoustic modes as a vector basis for representing acoustic excitations; o the numerical evaluation of Green functions related to the specific geometry of the problem under investigation. All these ingredients are embedded in the ACTRAN/AR CAE tool which provides unprecedented performance for acoustic radiation analysis. The method will be demonstrated on several applications taken from various industries.

  • PDF

Numerical Simulation of Acoustic Radiation and Fluid/Structure Interaction Based on the Helmholtz Integral Equation (헬름홀쯔 적분 방정식에 기반을 둔 구조물의 음향방사 및 구조/음향 연성 수치해석)

  • Choi, Sung-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.8
    • /
    • pp.411-417
    • /
    • 2008
  • An alternative formulation of the Helmholtz integral equation derived to express the pressure field explicitly in terms of the velocity vector of a radiating surface is used to solve acoustic radiation and fluid/structure interaction problems. This formulation, derived for arbitrary sources, is similar in form to the Rayleigh's formula for planar sources. Because the surface pressure field is expressed explicitly as a surface integral of the surface velocity, which can be implemented numerically using standard Gaussian quadratures, there is no need to use BEM to solve a set of simultaneous equations for the surface pressure at the discretized nodes. Furthermore the non-uniqueness problem inherent in methods based on Helmholtz integral equation is avoided. Validation of this formulation is demonstrated for some simple geometries.

Error Investigation in use of Near-field Acoustic Holography in the Underwater Environment of Reflected Wave (수중반사파 환경에서의 근접음장 홀로그래피 적용에 대한 오차 고찰)

  • Yi, Jongju;Kang, Myunghwan;Han, Seungjin;Jeong, Hyunjoo;Bae, Sooryong;Jung, Woojin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.12
    • /
    • pp.969-976
    • /
    • 2014
  • Nowadays, it is required for naval ships to estimate 3D underwater radiated noise pattern in all direction at peak frequencies of hull vibration for the reduction of being detected and doing the effective operation. For this purpose, the numerical method has to be developed to calculate 3D underwater radiated noise pattern with experimental data. It is very difficult to obtain the experimental data for the real ship. Alternative to get the experimental results is to use NAH(near-field acoustic holography) in acoustic tank with experimental model. Application of NAH in acoustic tank for the experimental model needs some investigation of reflection wave from the wall of the acoustic tank and unmeasured zone of the experimental model due to the supporting structure for it. In this study, the effect of reflection wave in the acoustic tank and unmeasured area of the experimental model when using the NAH was investigated with experiment and numerical model. From these, it is known for the error due to reflection wave can be reduced when the distance between the measurement plane and source is being shorten. Also, unmeasured area of the experimental model gives rise to some error in the estimation of the far-field acoustic pressure.

Study on low frequency swishing sound field by singularities in circular motion with large radius (큰 반경의 원운동을 하는 점 음원에 의한 저주파수 스위싱 음장 분석)

  • Lee, Gwang-Se;Cheong, Cheolung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.90-95
    • /
    • 2014
  • In order to investigate low frequency swishing noise of wind turbines, singularity in circular motion with large radius is introduced as a noise source model. By employing Lowson's acoustic analogy, simple exact solution is obtained. The solution shows that time histories of acoustic pressure at receiver points varied significantly according to receiver's directional location, even when the retarded time distributions are similar. However, the corresponding spectra of sound pressure for the receiver locations where the retarded time distributions are almost the same are not significantly different. It can be inferred from these results that the time-averaged sound pressure spectra which cannot take into account the detailed difference in the time-variation of wind turbine noise may not represent the sound quality of wind turbines due to its swishing.

  • PDF

PZT5 spherical hydrophone simulation using a coupled FE-BE method (결합형 유한요소-경계요소 기법을 활용한 PZT5 구형 수중 수파기 시뮬레이션)

  • Jarng, Soon-Suck
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.6
    • /
    • pp.377-385
    • /
    • 1998
  • This paper describes the application of a coupled finite element-boundary element method to obtain the steady-state response of a hydrophone. The particular structure considered is a flooded piezoelectric spherical shell. The hydrophone is three-dimensionally simulated to transduce an incident plane acoustic pressure onto the outer surface of the sonar spherical shell to electrical potentials on inner and outer surfaces of the shell. The acoustic field formed from the scattered sound pressure is also simulated. And the displacement of the shell caused by the externally incident acoustic pressure is shown in temporal motion. The coupled FE-BE method is described in detail.

  • PDF