• Title/Summary/Keyword: Acoustic Absorption

Search Result 222, Processing Time 0.027 seconds

Effect of Moisture Content on Acoustic Absorption and Impedance of Wood (목재(木材)의 흡음(吸音)과 음향(音響)임피이던스에 미치는 함수율(含水率)의 영향(影響))

  • Hong, Byung-Wha
    • Journal of the Korean Wood Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.25-29
    • /
    • 1994
  • The effect of moisture content on acoustic absorption coefficient and impedance of the woods of Pinus densiflora, Chamaecyparis pisifela, Cryptomeria japonica, Abies koreana, Melia azedarch var. japonica, Shorea bracteolata and Shorea acuminata was investigated by standing wave method. The results obtained are summarized as follows: The acoustic absorption coefficient increased with increasing moisture content, but acoustic impedance decreased with increasing moisture content.

  • PDF

Acoustic Absorption Coefficient and Impedance of Wood Sections (목재단면(木材斷面)의 흡음계수(吸音係數)와 음향(音響)임피이던스)

  • Hong, Byung-Wha
    • Journal of the Korean Wood Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.26-33
    • /
    • 1989
  • The acoustic absorption coefficient and acoustic impedance of 5 species of softwood(sonamoo, sam namoo, gusang namoo, hwaback, sitka spruce) and 5 species of hardwood (Mulgusul namoo, Italian popular, white meranti, red meranti, kalantas) were measured by the standing wave method. which is simple in the setup and gives more accurate result than does any other measuring method. The dependence of the absorption coefficient and complex acoustic impedance on the wood sections. thickness of the sample itself and the back air gap was investigated experimentally in the frequency range from 200Hz to 1800Hz, and the result are as follows: 1. The acoustic absorption coefficient of wood sections was higher on the cross section than radial and tangential sections. 2) The acoustic absorption coefficient were higher in the frequency range from 400Hz to 600Hz, but decreased in the frequency above 600Hz. 3. The genenal tendency of the variation of the normal acoustic impedance was increased according to the frequency. 4. The acoustic absortion coefficient was increased in the to 7mm-thick sample and decreased in 9mm-thick sample. 5. The higher acoustic absorption coefficient was shown in the case with the backing an gap than in the case without the gap.

  • PDF

Effect of Acoustic Reflector's Surface Density on Sound Absorption Characteristics and Stage Acoustics (음향 반사판의 밀도별 흡음특성 및 무대음향에의 영향)

  • Kim, Young-Sun;Jeong, Jeong-Ho;Jeon, Jin-Yong;Kim, Myeong-Seok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.5
    • /
    • pp.429-436
    • /
    • 2012
  • In concert halls and auditoriums, acoustic reflector and stage enclosure is one of the main factors on the room and stage acoustic characteristics. As a stage enclosure and acoustic reflector honey comb based light-weight reflector is widely used, because it is easy to install. However, there was not enough research on the surface density effect on room and stage acoustics. In this study, sound absorption coefficient tests on three kinds of wooden acoustic reflectors with different surface density were conducted. Surface density of acoustic reflector was changed from 11 kg/$m^2$ to 41 kg/$m^2$. For the low frequency excitation, sub-woofer was used with omnidirectional loud-speaker simultaneously. From the experiments, it was found that sound absorption coefficient below 250 Hz band was decrease by the increment of surface density. In order to check the influence of the surface density on room and stage acoustic parameters, room acoustic simulation was conducted with sound absorption coefficients, which were tested in reverberation chamber. By the increment of surface density of acoustic reflector, RT(reverberation time) and EDT(early decay time) were increased. Also, ST(stage support) was improved in low frequency bands.

A Study on the Improvement of Acoustic Absorption of Multiple Layer Perforated Panel Systems (다중 다공판 시스템의 흡음성능 향상에 관한 연구)

  • Lee, Dong-Hoon;Seo, Seong-Won;Hong, Byung-Kuk;Song, Hwa-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.5 s.98
    • /
    • pp.571-577
    • /
    • 2005
  • The acoustic absorption of multiple layer perforated panel systems is largely reduced at the anti-resonance frequency. In order to improve the acoustic absorption at the anti-resonance frequency, the sound absorbing materials are inserted between perforated panels. By the insertion of absorbing materials, it is found that the multiple layer perforated panel system has better acoustic absorption at the anti-resonance frequency and more broadband frequency. Besides, it is shown that the absorption coefficients from the transfer matrix method agree well with the values measured by the two-microphone impedance tube method for various combinations of perforated panels, airspaces or sound absorbing materials.

Experimental Study on Acoustic Absorption and Transmission Characteristics of Aluminium and Sandwich Composite Structure (금속 및 샌드위치 복합재 유도탄 구조체의 흡음 및 차음 특성에 관한 실험적 연구)

  • Lee, Yoon-kyu;Lee, Dae-oen;Jin, Byung-Dae;Lee, Dong-min
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.288-294
    • /
    • 2018
  • Recently, as the speed and performance of the launcher and the missile have been improved, it is necessary to consider the acoustic load of launching and flight in initial design step. In this paper, an experimental study on acoustic absorption and transmission characteristics of aluminium vs. sandwich composite structures were conducted. The overall noise reduction was evaluated by performing an acoustic test in the reverberation room, and the acoustic absorption and transmission loss of the structures were analyzed by conducting the sound absorption test inside the structure.

An Experimental Study on Acoustic Absorption in a Model Chamber with a Half-Wave Resonator (반파장 공명기를 장착한 모형연소실의 흡음특성에 대한 실험적 연구)

  • Sohn, Chae-Hoon;Park, Ju-Hyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.3
    • /
    • pp.34-40
    • /
    • 2008
  • Acoustic design parameters of a half-wave resonator are studied experimentally for acoustic stability in a model chamber. According to the standard acoustic-test procedures, acoustic-pressure signals are measured. Quantitative acoustic properties of damping factor and sound absorption coefficient are evaluated and thereby, the acoustic-damping capacity of the resonator is examined. The diameter and the number of a half-wave resonator, its distribution, and the diameter of an enclosure are selected as the design parameters for optimal tuning of the resonator. Aroustic-damping capacity of the resonator increases with its diameter. When the open-area ratio of the resonator exceeds the optimum value, over-damping appears, leading to the decrease in the peak absorption coefficient and the broadening of absorption bandwidth. As the resonator diameter increases, optimum open-area ratio decreases.

On Design of Half-Wave Resonators for Acoustic Damping in a Model Combustion Chamber (모형 연소실내 음향 감쇠를 위한 반파장 공명기의 설계에 관한 연구)

  • Park, Ju-Hyun;Sohn, Chae-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.18-21
    • /
    • 2008
  • Acoustic design parameters of a half-wave resonator are studied experimentally for acoustic stability in a model combustor. According to standard acoustic-test procedures, acoustic-pressure signals are measured. Quantitative acoustic properties of damping factor and sound absorption coefficient are evaluated and thereby, the acoustic damping capacity of the resonator is characterized. The diameter and the number of a half-wave resonator, its distribution are selected as design parameters for optimal tuning of the resonator. Acoustic damping capacity increases as the resonators with diameter increases. The optimum number of resonators or the optimum open-area ratio decreases as boundary absorption decreases.

  • PDF

A Study on the Effect of Acoustic Properties on the Absorption Characteristics of Polyester Fiber Materials (폴리에스터 흡음재 흡음특성에의 음향 물성치 영향평가 연구)

  • Park, Hern-Jin;Jeong, Myong-Guk;Shim, Sung-Young;Lee, Jun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.885-891
    • /
    • 2003
  • Effects of each acoustic property on absorption characteristics of polyester fiber materials has been studied in this paper. It would be impossible for us to measure effects of each acoustic property by experimental method since we cannot make sound-absorbing materials in which only one of the properties is changed. We have adopted a numerical prediction method to carry out parameter studies for each acoustic property. And to get a general behavior of acoustic performance of the materials, the numerical simulation has been repeated to several cases of different bulk density. Finally we have obtained frequency-dependent control factors in the absorption performance which gives us design capability of acoustic absorbing materials.

  • PDF

A Study on the Acoustic Absorption Character of a Helmholtz Resonator in Model Chamber (모형연소실에 장착한 헬름홀츠 공명기의 흡음특성에 관한 연구)

  • Park, Ju-Hyun;Sohn, Chae-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.399-402
    • /
    • 2009
  • Acoustic design parameters of a Helmholtz resonator are studied experimentally and numerically for acoustic stability in a model acoustic tube. According to standard acoustic-test procedures, acoustic-pressure signals are measured. Quantitative acoustic properties of sound absorption coefficient are evaluated and thereby, the acoustic damping capacity of the resonator is characterized. Helmholtz resonator on spring-damper system use were understanding for acoustic damping. The length of orifice and the volume of cavity of resonator are selected as design parameters for tuning of the resonator. Acoustic- damping capacity of the resonator increases with its cavity volume. And orifice length as increases with acoustic damping capacity was decreased.

  • PDF

Sound Absorption Characteristics of Finite-Amplitude Acoustic Waves in Poroelastic Materials (탄성다공성 재질에서 유한진폭 입사음파의 흡음 특성)

  • Lee, Soo-Il;Kim, Jin-Seop;Kang, Yeon-June
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.591-595
    • /
    • 2000
  • Sound absorbing characteristics of poroelastic materials is known to be greatly affected by high intensity acoustic waves. However, this effect has not been considered yet. In this study, the extended semilinear model based on Biot's theory for the porous materials and the characteristics of nonlinear waves in poroelastic sound absorbing materials were introduced. The expressions for the finite-amplitude acoustic plane waves were presented. By combining each nonlinear wave with appropriate matching conditions, we could investigate the effects of finite-amplitude acoustic waves on absorption characteristics of poroelastic materials. In the most ideal case considered in this paper, the absorption coefficient was found to become larger than that of linear incident waves. It was shown that the absorption coefficient became greater especially as frequency goes higher and as distance from the source goes larger. These phenomena may be inferred to result from 'dissipation effects due to nonlinearity'. This finding may have important implications for high intensity noise control.

  • PDF