• Title/Summary/Keyword: Acid-treated

Search Result 4,920, Processing Time 0.03 seconds

Physical and Waterproof Properties of Mortar Using Cement Sludge Treated with Hydrofluosilicic Acid (규불화수소산 처리 시멘트 슬러지를 사용한 모르타르의 물성 및 방수 특성)

  • 김승문;이병기;김도수;노재성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.76-81
    • /
    • 1998
  • The physical properties of cement sludge treated with hydrofluosilicic acid were investigated. The compressive strength of cement mortar substituted cement sludge was decreased than that of OPC(ordinary portland cement) mortar. Cement sludge, for improving its physical properties, was treated with hydrofluosilicic acid. And compressive strength of cement mortar substituted TCS was greatly improved than that of OPC mortar. Particularly, cement mortar substituted TCS had the higher value in water-proofness than of OPC.

  • PDF

Effect of Different Periods of Cold Storing of Bivoltine Eggs on Subsequent Generation Rearing Performance

  • Venkatesh, H.;Raghuraman, R.;Katti, S.R.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.9 no.2
    • /
    • pp.269-272
    • /
    • 2004
  • Different methods of cold storing of bivoltine eggs are in practice to postpone hatching. Bivoltine eggs undergo hibernation if they are not acid treated within 20 - 24 hrs of oviposition, which depends on race, ambient temperature and humidity. The schedules adopted for cold storing include hibernation schedule (Hib), ordinary chilling (OC), short term chilling (STC) and acid treated layings (AT). Peanut cocooning race ${NB_4}{D_2}$ has been subjected for the present assessment. Cocoons harvested from the crop pertaining to all the four methods of cold storing have been used for producing different combinations and acid treated followed by rearing. The performance in respect of chawki loss, maximum larval weight 4({5^th} age)$, yield/ 10,000 larvae (no), cocoon and shell weight showed maximum values for hibernation ${\times}$ hibernation combination followed hibernation with OC and hibernation with AT. Lowest performance was recorded when STC batch source females were used.

The Effects of Additives in Napier Grass Silages on Chemical Composition, Feed Intake, Nutrient Digestibility and Rumen Fermentation

  • Bureenok, Smerjai;Yuangklang, Chalermpon;Vasupen, Kraisit;Schonewille, J. Thomas;Kawamoto, Yasuhiro
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.9
    • /
    • pp.1248-1254
    • /
    • 2012
  • The effect of silage additives on ensiling characteristics and nutritive value of Napier grass (Pennisetum purpureum) silages was studied. Napier grass silages were made with no additive, fermented juice of epiphytic lactic acid bacteria (FJLB), molasses or cassava meal. The ensiling characteristics were determined by ensiling Napier grass silages in airtight plastic pouches for 2, 4, 7, 14, 21 and 45 d. The effect of Napier grass silages treated with these additives on voluntary feed intake, digestibility, rumen fermentation and microbial rumen fermentation was determined in 4 fistulated cows using $4{\times}4$ Latin square design. The pH value of the treated silages rapidly decreased, and reached to the lowest value within 7 d of the start of fermentation, as compared to the control. Lactic acid content of silages treated with FJLB was stable at 14 d of fermentation and constant until 45 d of ensiling. At 45 d of ensiling, neutral detergent fiber (NDF) and acid detergent fiber (ADF) of silage treated with cassava meal were significantly lower (p<0.05) than the others. In the feeding trial, the intake of silage increased (p<0.05) in the cow fed with the treated silage. Among the treatments, dry matter intake was the lowest in the silage treated with cassava meal. The organic matter, crude protein and NDF digestibility of the silage treated with molasses was higher than the silage without additive and the silage treated with FJLB. The rumen parameters: ruminal pH, ammonia-nitrogen ($NH_3$-N), volatile fatty acid (VFA), blood urea nitrogen (BUN) and bacterial populations were not significantly different among the treatments. In conclusion, these studies confirmed that the applying of molasses improved fermentative quality, feed intake and digestibility of Napier grass.

A Study on Purification of Chitin and Chitosan for Textile Finishing Agent from Crab Shell (게껍질로부터 섬유가공용 Chitin.Chitosan 정제에 관한 연구)

  • Lee, Seok-Young;Park, Sung-Woo;Cho, Hwan;Gu, Kang
    • Textile Coloration and Finishing
    • /
    • v.11 no.2
    • /
    • pp.55-63
    • /
    • 1999
  • The purpose of this study was to investigate the purification of chitin and chitosan for textile finishing agent from crab shell. Weight loss rate(removing Ca and protein), degree of deacetylation, solubility and MIC(Minimum growth inhibitory concentration) value of chitosan and molecular weight of the treated crab shell were measured. The results of this study were as follows : 1) Weight loss rate(removing Ca) of crab shell treated with HCI increased with the concentration of HCI and treatment time, but it became constant over 60 min. of treatment time. 2) Weight loss rate(removing protein) of crab shell treated with NaOH(0.5N∼2N) increased with the concentration of NaOH and treatment temperature and time, but it became constant above loot of temperature and over 200 min. of treatment time. 3) Degree of deacetylation of chitin treated with NaOH increased with the concentration of NaOH(40∼60%), but molecular weight decreased and thus MIC value increased. 4) Concentration of acetic acid should be above 0.3% to dissolve chitosan easily. Solubility for chitosan was the highest with formic acid, and the next was acetic acid, hydrochloric acid, lactic acid and sulfuric acid in order.

  • PDF

Antistatic Finishing of PVC Film Treated with Corona Discharge (Corona방전처리에 의한 PVC film의 대전방지가공)

  • 허만우;이창재;김성일;강인규;이두현;양희삼;김삼수
    • Textile Coloration and Finishing
    • /
    • v.10 no.3
    • /
    • pp.43-49
    • /
    • 1998
  • Polyvinyl chloride (PVC) sheets were treated with corona discharge to produce peroxy radicals on the surfaces. The peroxy radicals formed on the PVC surfaces were subsequently used as initiators for the graft polymerization of acrylic acid or acrylamide in an aqueous solution. Introduction of acrylic acid and acrylamide on the PVC sheet could be confirmed by the observation of carbonyl and primary amine absorptions based on carboxylic acid and amide, respectively. The water contact angle$(90^\circ)$ of PVC sheet was constant, irrespective of time, while corona-treated and functional monomer-grafted PVCs were slowly increased with time, showing the rearrangement of surface polar groups in air condition. The water contact angle of PVC sheet$(90^\circ)$ was decreased by corona treatment$(78^\circ)$, and further decreased by the grafting of acrylic acid$(55^\circ)$ and acrylamide$(56^\circ)$ , indicating increased hydrophilicity of the modified surfaces. The half-life periods of surface voltage on acrylic acid- (62 sec) and acrylamide-grafted PVC (147sec) were significantly decreased when compared to those on PVC (3,115 sec) and corona-treated PVC (463sec). These results mean that acrylic acid- and acrylamide-grafted PVCs could be used as the antistatic sheets.

  • PDF

Reliability of the Impregnated Boron Compounds, Citric Acid- and Heat-Treated Samama (Anthocephalus macrophyllus) Wood against the Fungal and Termite Attacks

  • Trisna PRIADI;Guruh Sukarno PUTRA;Tekat Dwi CAHYONO
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.1
    • /
    • pp.49-57
    • /
    • 2023
  • This research aimed to evaluate the durability of Samama (Anthocephalus macrophyllus) wood treated with boron preservatives, citric acid (CA), and heating against termites. Wood samples were impregnated firstly with 5% boron solutions, such as boric acid, borax and boric acid + borax combination at 1:1 (w/w). The second impregnation used 5% CA. The impregnations were conducted in a pressure tank at 7 kg/cm2 for 4 hours. After impregnation, the samples were heat treated at 80℃ or 160℃. All the treated and control samples were exposed to decay fungi, drywood termites and subterranean termites based on SNI 7207:2014 standard. The results showed that boron preservatives reduced fungal attacks on Samama wood. The combination treatment of boric acid, CA and heat treatment at 160℃ was also effective to increase the resistance of Samama wood against white- and brown rot fungi, and drywood termites. Heat treatment consistently improved the resistance of Samama wood from decay fungi.

Development of a new lactic acid bacterial inoculant for fresh rice straw silage

  • Kim, Jong Geun;Ham, Jun Sang;Li, Yu Wei;Park, Hyung Soo;Huh, Chul-Sung;Park, Byung-Chul
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.7
    • /
    • pp.950-956
    • /
    • 2017
  • Objective: Effects of newly isolated Lactobacillus plantarum on the fermentation and chemical composition of fresh rice straw silage was evaluated in this study. Methods: Lactic acid bacteria (LAB) from good crop silage were screened by growing them in MRS broth and a minimal medium with low carbohydrate content. Selected LAB (LAB 1821) were Gram-positive, rods, catalase negative, and were identified to be Lactobacillus plantarum based on their biochemical characteristics and a 16S rRNA analysis. Fresh rice straw was ensiled with two isolated LAB (1821 and 1841), two commercial inoculants (HM/F and P1132) and no additive as a control. Results: After 2 months of storage at ambient temperature, rice straw silages treated with additives were well-preserved, the pH values and butyric and acetic acid contents were lower, and the lactic acid content and lactic/acetic acid ratio were higher than those in the control (p<0.05). Acidity (pH) was lowest, and lactic acid highest, in 1821-treated silage (p<0.05). The $NH_3-N$ content decreased significantly in inoculant-treated silage (p<0.05) and the $NH_3-N$ content in 1821-treated silage was lowest among the treatments. The dry matter (DM) content of the control silage was lower than that of fresh rice straw (p<0.05), while that of the 1841- and p1174-inoculant-treated silages was significantly higher than that of HM/F-treated silage. Microbial additives did not have any significant (p>0.05) effect on acid detergent fiber or neutral detergent fiber contents. Crude protein (CP) content and in vitro DM digestibility (IVDMD) increased after inoculation of LAB 1821 (p<0.05). Conclusion: LAB 1821 increased the CP, IVDMD, lactic acid content and ratio of lactic acid to acetic acid in rice straw silage and decreased the pH, acetic acid, $NH_3-N$, and butyric acid contents. Therefore, adding LAB 1821 improved the fermentation quality and feed value of rice straw silage.

Nitrogen Retention and Chemical Composition of Urea Treated Wheat Straw Ensiled with Organic Acids or Fermentable Carbohydrates

  • Sarwar, M.;Khan, M. Ajmal;Nisa, Mahr-un
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.11
    • /
    • pp.1583-1591
    • /
    • 2003
  • The influence of varying levels of urea and additives on nitrogen (N) retention and chemical composition of wheat straw was studied. The wheat straw was treated with 4, 6 and 8% urea and ensiled with 1.5, 2 and 2.5% of acetic or formic acid and 2, 4 and 6% of corn steep liquor (CSL) or acidified molasses for 15 days. The N content of wheat straw was significantly different across all treatments. The N content of urea treated wheat straw was increased with the increasing level of urea. The N content was higher in urea treated wheat straw ensiled with acetic or formic acid as compared to urea treated wheat straw ensiled without these organic acids. The N content of urea treated wheat straw was further enhanced when it was ensiled with CSL or acidified molasses. This effect was significant across all levels of urea used to treat the wheat straw. Nitrogen retention in urea treated wheat straw was decreased linearly as the urea level was increased to treat the wheat straw. The N content was increased linearly when higher levels of CSL or acidified molasses were used to ensile the urea treated wheat straw. Most of the N in urea treated wheat straw was held as neutral detergent insoluble N (NDIN). The NDIN content was increased linearly with the increasing levels of urea and additives. The neutral detergent fiber (NDF) contents were higher in urea treated wheat straw ensiled with acetic or formic acid as compared to urea treated wheat straw ensiled without additive. The NDF content further increased in urea treated wheat straw ensiled with CSL and acidified molasses. The entire increase in NDF content was because of fiber bound N. The hemicellulose content of urea treated wheat straw ensiled with CSL or acidified molasses was higher as compared to urea treated wheat straw ensiled with acetic or formic acid. The acid detergent fiber content of urea treated wheat straw ensiled with or without additives remained statistically non-significant. The cellulose contents of wheat straw was linearly reduced when urea level was increased from 4 to 6 and 8% to treat the wheat straw. This effect was further enhanced when urea treated wheat straw was ensiled with different additives. The results of the present study indicated that fermentable carbohydrates might improve the Nitrogen retention and bring the favorable changes in physiochemical nature of wheat straw. However, biological evaluation of urea treated wheat straw ensiled with fermentable carbohydrates is required.

Effects of $\alpha$-lipoic acid on cell proliferation and apoptosis in MDA-MB-231 human breast cells

  • Na, Mi-Hee;Seo, Eun-Young;Kim, Woo-Kyoung
    • Nutrition Research and Practice
    • /
    • v.3 no.4
    • /
    • pp.265-271
    • /
    • 2009
  • The role that antioxidants play in the process of carcinogenesis has recently gained considerable attention. $\alpha$-Lipoic acid, a naturally occurring disulfide molecule, is a powerful antioxidant that reportedly exerts beneficial effects in patients with advanced cancer by reducing the level of reactive oxygen species and increasing glutathione peroxidase activity. In this study, we examined changes in the protein and mRNA expression associated with cell proliferation and apoptosis in MDA-MB-231 breast cancer cultured in the presence of various concentrations (0, 250, 500, and 1000 ${\mu}mol/L$) of $\alpha$-lipoic acid. The results revealed that $\alpha$-lipoic acid inhibited the growth of breast cancer cells in a dose-independent manner (P < 0.05). Additionally, $ErbB_2$ and $ErbB_3$ protein and mRNA expressions were significantly decreased in a dose-dependent manner in response to $\alpha$-lipoic acid (P < 0.05). Furthermore, the protein expression of phosphorylated Akt (p-Akt) levels and total Akt, and the mRNA expression of Akt were decreased dose-dependently in cells that were treated with $\alpha$-lipoic acid (P < 0.05). Bcl-2 protein and mRNA expressions were also decreased in cells that were treated with $\alpha$-lipoic acid (P < 0.05). However, Bax protein and mRNA expressions were increased in cells treated with $\alpha$-lipoic acid (P < 0.05). Finally, caspase-3 activity was significantly increased in a dose-dependent manner in cells treated with $\alpha$-lipoic acid (P < 0.05). In conclusion, we demonstrated that $\alpha$-lipoic acid inhibits cell proliferation and induces apoptosis in MDA-MB-231 breast cancer cell lines.

Effect of Rosemary Extract on Lipid Oxidation, Fatty Acid Composition, Antioxidant Capacity, and Volatile Compounds of Salted Duck Eggs

  • Harlina, Putri Widyanti;Ma, Meihu;Shahzad, Raheel;Khalifa, Ibrahim
    • Food Science of Animal Resources
    • /
    • v.42 no.4
    • /
    • pp.689-711
    • /
    • 2022
  • The purpose of our study was to determine the impact of rosemary extract in duck eggs, as determined by in vitro antioxidant capacity, lipid oxidation, fatty acid profiles, and flavor analyses. Three groups of salted duck eggs were compared: A control group and group enriched with 0.1% and 0.5% (w/v) rosemary extracts for 28 days of salting. In a time-dependent manner, the radical scavenging activity and reduction power of eggs with 0.5% (w/v) rosemary extract were significantly higher those of the control at 28 days after salting. The fatty acid profiles of salted egg were significantly affected by rosemary extract and salting time. Palmitic acid was the most abundant fatty acid in salted egg treated with rosemary extract, followed by linoleic acid and arachidonic acid. Furthermore, the treated eggs contained more docosahexaenoic acid than the control ones. And the treated eggs also have a considerable impact on the lipid oxidation process (primary and secondary oxidation). As a result, rosemary extract can be used as a natural antioxidant spice to prevent oxidation and extend the shelf life of eggs during storage. Furthermore, flavor research using solid phase microextraction - gas chromatography - mass spectrometry and an electronic nose demonstrated that adding rosemary extract to salted eggs could give them a distinct flavor.