• Title/Summary/Keyword: Acid-amine complex

Search Result 29, Processing Time 0.024 seconds

Preparation and Properties of Waterborne-Polyurethane Coating Materials Containing Conductive Polyaniline

  • Kim, Han-Do;Kwon, Ji-Yun;Kim, Eun-Young
    • Macromolecular Research
    • /
    • v.12 no.3
    • /
    • pp.303-310
    • /
    • 2004
  • We have prepared an aqueous dispersion of poly(aniline-dodecyl benzene sulfonic acid complex) (PANI-DC) that has an intrinsic viscosity (〔η〕) near 1.3 dL/g using aniline as a monomer, dodecyl benzene sulfonic acid(DBSA) as a dopant/emulsifier, and ammonium peroxodisulfate(APS) as an oxidant. We found that the electrical conductivity of a PANI-DC pellet was 0.7 S/cm. A waterborne-polyurethane (WBPU) dispersion, obtained from isophorone diisocyanate/polytetramethylene oxide glycol/dimethylol propionic acid/ethylene diamine/triethylene amine, was used as a matrix polymer. We prepared blend films of WBPU/PANI-DC with variable weight ratios (from 99/1 to 66/34) by solution blending/casting and investigated the effects that the PANI-DC content has on the mechanical and dynamic mechanical properties, hardness, electrical conductivity, and antistaticity of these films. The tensile strength, percentage of elongation, and hardness of WBPU/PANI-DC blend films all decreased markedly upon increasing the PANI-DC content. The antistatic half-life time ($\tau$$\sub$$\frac{1}{2}$/) of pure WBPU film was about 110 s, but we found that those of WBPU/ultrasound-treated PANI-DC blend films decreased exponentially from 1.2 s to 0.1 s to almost 0 s upon increasing the PANI-DC content from 1 wt% to 15 wt% to > 15 wt%, respectively.

A Study on the Reactivity of Dioxygen Bridged Palladium Complexes Having Amine Ligands (아민을 리간드로 갖는 산소가교 팔라듐 착화합물의 반응성에 관한 연구)

  • Chung, Pyung-Jin
    • Applied Chemistry for Engineering
    • /
    • v.3 no.3
    • /
    • pp.471-481
    • /
    • 1992
  • This study is related to the reactivity of dioxygen bridged palladium complexes having amine ligands. New dloxygen bridged palladium complexes were prepared using superoxide ion(${O_2}^-$) as an oxygen source. The reactions of dioxygen palladium complexes prepared in the study were examined in order to clarify the nature of the coordinated dioxygen. Treatments of a solution of the dioxygen bridged palladium complexes in benzene by water, methanol, acetic acid gave hydrogen peroxide($H_2O_2$) and hydroxy, methoxy, acetoxy-bridged palladium complexes, respectively. The dioxygen bridged palladium complexes reacted with substitution phenols of salicylaldehyde, 8-hydroxyquinoline and active mothylenes of acetylacetone, dimethyl malonate to afford mononuclear complexes of palladium and hydrogen peroxide. Furthermore, she dioxygen bridged palladium complexes changed to acetonyl bridged palladium complex and hydrogen peroxide reacting with acetone. The results suggest that dioxygen is coordinated as peroxo (${O_2}^{2-}$) in the complexes and behaves as a strong base.

  • PDF

Study of an electrochemical analysis method for Indole-3-Acetic Acid based on reduced graphene oxide composite catalyst coated screen-printed carbon electrode (환원 그래핀 옥사이드 복합 촉매가 코팅된 스크린 프린트 탄소전극 기반 Indole-3-Acetic Acid 전기화학분석법 연구)

  • Yoo-Jin Weon;Min-Yeong Kim;Young-Bae Park;Kyu Hwan Lee
    • Journal of Surface Science and Engineering
    • /
    • v.57 no.4
    • /
    • pp.265-273
    • /
    • 2024
  • An amperometric sensor for measuring indole-3-acetic acid (IAA) was studied based on a screen-printed carbon electrode (SPCE) coated with a reduced graphene oxide composite electrocatalyst. The PEI-GO dispersion is uniformly formed through a nucleophilic substitution reaction between the active amine group of Polyethyleneimine (PEI) and the epoxide group exposed on the surface of graphene oxide. And The 3-dimensional PEI-rGO AG (Polyethyleneimine-reduced graphene oxide aerogel) complex was easily prepared through simple heat treatment of the combined PEI-GO dispersion. The proposed composite catalyst electrode, PEI-rGO AG/SPCE, showed a two linear relationship in the low and high concentrations in IAA detection, and the linear equation was Ipa = 0.2883C + 0.0883 (R2=0.9230) at low concentration and Ipa = 0.00464C + 0.6623 (R2=0.9894) at high concentration was proposed, and the detection limit was calculated to be 203.5nM±33.2nM. These results showed the applicability of the PEI-rGO AG composite catalyst as an electrode material for electrocatalysts for the detection of IAA.

Synthesis of the Water Dispersible L-Valine Capped ZnS:Mn Nanocrystal and the Crystal Structure of the Precursor Complex: [Zn(Val)2(H2O)]

  • Hwang, Cheong-Soo;Lee, Na-Rae;Kim, Young-Ah;Park, Youn-Bong
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.11
    • /
    • pp.1809-1814
    • /
    • 2006
  • The L-Valinate anion coordinating zinc complex, [$Zn(val)_2(H-2O)$], was isolated and structurally characterized by single crystal X-ray crystallography. The crystal possess orthorhombic symmetry with a space group $P2_12_12_1$, Z = 4, and a = 7.4279(2)$\AA$, b = 9.4342(2)$\AA$, c =20.5862(7)$\AA$ respectively. The compound features a penta-coordinate zinc ion in which the two valine anion molecules are directly coordinating the central zinc metal ion via their N (amine) and O (carboxylate) atoms, and an additional coordination to zinc is made by water molecule (solvent) to form a distorted square pyramidal structure. In addition, further synthesis of the valine capped ZnS:Mn nanocrystal from the reaction of [$Zn(val)_2(H-2O)$] precursor with $Na_2S$ and 1.95 weight % of $Mn^{2+}$ dopant is described. Obtained valine capped nanocrystal was water dispersible and was optically characterized by UV-vis and solution PL spectroscopy. The solution PL spectrum for the valine capped ZnS:Mn nanocrystal showed an excitation peak at 280 nm and a very narrow emission peak at 558 nm respectively. The measured and calculated PL efficiency of the nanocrystal in water was 15.8%. The obtained powders were characterized by XRD, HR-TEM, and EDXS analyses. The particle size of the nanocrystal was also measured via a TEM image. The measured average particle size was 3.3 nm.

Preparationan dCrystal Structure of [Ni($L^2$)($H_2O$)]Cl$\cdot$$H_2O$ ($L^2$: 3,14-dimethyl-2,6,13,17-tetraazatricyclo [14,4,$0^{1.18}$,$0^{7.12}$]docosane-N-acetic acid) ([Ni($L^2$)($H_2O$)]Cl$\cdot$$H_2O$ ($L^2$: 3,14-dimethyl-2,6,13,17-tetraazatricyclo [14,4,$0^{1.18}$,$0^{7.12}$docosane-N-acetic acid) 착물의 합성 및 결정구조)

  • Park, Ki-Yonng;Park, Young-Soo;Kim, Jin-Gyu;Suh, Il-Hwan;Kim, Chang-Suk
    • Korean Journal of Crystallography
    • /
    • v.10 no.1
    • /
    • pp.33-38
    • /
    • 1999
  • The complex [Ni(L2)(H2O)]Cl·H2O (1) (L2=3,14-dimethyl-2,6,13,17-tetraazartricyclo [14,4,01.18,07.12]docosane-N-acetic acid) has been synthesized and characterized by X-ray crystallography. 1 crystallizes in the triclinic system, space group P, with a=11.274(1), b=13.851(1), c=17.159(6) , α=90.24(2), β=101.10(2), γ=92.11(1)o V=2682.5(11) 3, Z=4, R1=0.042 and wR2=0.111 for 9432 observed reflections with [I>2σ(I)]. The central nicke(II) ion is six-coordinated octahedral geometry with bonds to the four amine nitrogen atoms the carboxylic oxygen atom of the macrocyclic ligand and to the water molecule occupying a position trans to the pendant arm.

  • PDF

Fabrication and Characterization of Dye-Sensitized Solar Cells Based on Rhodamine Dyes (로다민 기반 염료감응형 태양전지의 제조 및 특성 분석)

  • Choi, Kang-Hoon;Jung, Hye-In;An, Byeong-Kwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.11
    • /
    • pp.731-736
    • /
    • 2015
  • Rhodamine B (RhB) was utilized as a dye sensitizer for dye-sensitized solar cells (DSSCs) and its photovoltaic property was examined under the illumination of AM 1.5 G, $100mWcm^{-2}$. DSSCs based on RhB exhibited typical photovoltaic properties with an open-circuit voltage ($V_{OC}$) of 0.34 V, a short-circuit current ($J_{SC}$) of $1.55mA{\cdot}cm^{-2}$, a fill factor (FF) of 50%, and a conversion efficiency (PCE) of 0.26%. In order to further improve the photovoltaic properties of RhB-based DSSCs, the effect of (i) incorporating a strong electron-donating NCS unit into the RhB molecular backbone, (ii) combining a bis-negatively charged zinc complex anion ($Zn-dmit_2$, dmit=di-mercapto-dithiol-thione) with the amine cation of RhB, (iii) co-adsorbing RhB dyes with chenodeoxycholic acid (CDCA) molecules onto porous $TiO_2$ electrodes, was investigated and discussed.

Synthesis of Polymer-Silica Hybrid Particle by Using Polyamine Nano Complex (폴리아민 나노 복합체를 이용한 고분자-실리카 복합체 입자 합성)

  • Kim, Dong-Yeong;Seo, Jun-Hee;Lee, Byungjin;Kang, Kyoung-Ku;Lee, Chang-Soo
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.115-123
    • /
    • 2021
  • This study demonstrates a new method for the synthesis of organic-inorganic hybrid particles composed of an inorganic silica shell and organic core particles. The organic core particles are prepared with a uniform size using droplet-based microfluidic technology. In the process of preparing the organic core particles, uniform droplets are generated by independently controlling the flow rates of the dispersed phase containing photocurable resins and the continuous phase. After the generation of droplets in a microfluidic device, the droplets are photo-polymerized as particles by ultraviolet irradiation at the ends of microfluidic channels. The core particle is coated with a nano complex composed of polyallylamine hydrochloride (PAH) and phosphate ion (Pi) through strong non-covalent interactions such as hydrogen bonding and electrostatic interaction under optimized pH conditions. The polyamine nano complex rapidly induces the condensation reaction of silicic acid through the arranged amine groups of the main chain of PAH. Therefore, this method enabled the preparation of organic-inorganic hybrid particles coated with inorganic silica nanoparticles on the organic core. Finally, we demonstrated the synthesis of organic-inorganic hybrid particles in a short time under ambient and environmentally friendly conditions, and this is applicable to the production of organic-inorganic hybrid particles having various sizes and shapes.

Heterocyclic Amines Removal by Binding Ability of Lactic Acid Bacteria Isolated from Soybean Paste (된장에서 분리된 유산균의 결합력에 의한 Heterocyclic Amines 제거)

  • Lim, Sung-Mee
    • Korean Journal of Microbiology
    • /
    • v.50 no.1
    • /
    • pp.73-83
    • /
    • 2014
  • The objective of the this study was to investigate the binding capacity and removal ability of lactic acid bacterial strains obtained from Korean soybean paste for mutagenic heterocyclic amines (HCAs) formed during cooking of protein-rich food at high temperature. Among 19 strains identified by carbohydrate fermentation and 16S rRNA sequencing, the live cell or cell-free culture supernatant of Lactobacillus acidophilus D11, Enterococcus faecium D12, Pediococcus acidilactici D19, L. acidophilus D38, Lactobacillus sakei D44, Enterococcus faecalis D66, and Lactobacillus plantarum D70 inhibited the mutagenesis caused by either 3-amino-1,4-dimethyl-5H-pyrido[4,3-b] indole (Trp-P-1) or 3-amino-1-methyl-5H-pyrido[4,3-b] indole (Trp-P-2) in Salmonella typhimurium TA98 and TA100. The bacterial cells of the isolated strains showed greater binding activity than the pure cell wall, exopolysaccharide, and pepetidoglycan. The carbohydrate moieties of the cell wall or protein molecules on the cell surface have a significant role in binding Trp-P-1 and Trp-P-2, since protease, heating, sodium metaperiodate, or acidic pH treatments significantly (P<0.05) reduced the binding efficacy of the tested bacteria. Addition of metal ions or sodium dodecyl sulfate decreased the binding ability of E. faecium D12, L. acidophilus D38, and E. faecalis D66. Therefore, the binding mechanisms of these strains may consist of ion-exchange and hydrophobic bonds. Especially, the high mutagen binding by L. acidophilus D38 and L. plantarum D70 may reduce the accumulation or absorption of Trp-P-1 and Trp-P-2 in the small intestine via increased excretion of a mutagen-bacteria complex.

Controlled Release of 2,4-D(2,4-Dichlorophenoxy Acetic Acid ) from the Complex of Rice Husk Lignin and 2,4-D-IV. Variation of Herbicidal Activity by Soil Environmental Factors (조곡(組穀) Lignin과 2,4-D (2,4-Dichlorophenoxy Acetic Acid) 결합체(結合體)의 방출제어(放出制御) 연구(硏究)- IV. 토양환경요인(土壤環境要因)에 따른 제초활성(除草活性)의 변이(變異))

  • Guh, J.O.;Lee, D.J.;Lim, K.P.;Kwon, S.L.
    • Korean Journal of Weed Science
    • /
    • v.10 no.2
    • /
    • pp.114-121
    • /
    • 1990
  • Inactivation in soil absorption, translocation of 2, 4-D by plants vary depending upon soil environments and herbicide formulations. Experiment was conducted in a glasshouse using rectangular pots($1350cm^2$) to evaluate the growth responses of barnyardgrass (Echinochloa crus-galli) and Indian jointvetch (Aesehyrcomene indica) to two formulations of 2, 4-D. The formulations used were 40% 2, 4-D amin salt (2, 4-D/AS) and 19.7% complex of rice husk lignin and 2, 4-D (2, 4-D/LG) which were applied at 200g ai/ha. Soil environments included fertilizer levels, soil pH, organic matter contents, and soil textures, Each treatment was replicated three times. The herbicidal activity of 2.4-D increased and lasted with increased levels of fertilizer. The activity also increased and lasted with low soil pH and decreased content of organic matter. Generally 2, 4-D/LG showed higher and longer herbicidal activity than 2. 4-D/AS for both test plants under all conditions applied. However, the herbicidal activity was influenced by the formulations more than by soil textures. It was thought that 2, 4-D/AS was released in a short time and inactivated readily while 2, 4-D/LG was slowly released and gave an opportunity of absorption by plants for a long period.

  • PDF