• Title/Summary/Keyword: Acid protease

Search Result 666, Processing Time 0.024 seconds

Bacteriocin Produced by Lactobacillus curvatus SE1 Isolated from Kimchi

  • Kim, Sung-Koo;Lee, Eun-Ju;Park, Keun-Young;Jun, Hong-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.6
    • /
    • pp.588-594
    • /
    • 1998
  • Lactic acid bacteria were isolated from Kimchi and screened for bacteriocin production. Strain SE1, identified as Lactobacillus curvatus sp., showed the strongest inhibitory activity against Lactobacillus delbrueckii subsp. delbrueckii. The bacteriocin was inactivated by amyloglucosidase, trypsin, or protease K treatment. However, it maintained its activity under heat treatment at $100^{\circ}C$ for 60 min. The production of the bacteriocin had a growth-related mode and decreased around the early-stationary phase. The optimum temperature for the growth of L. curvatus SE1 was $37^{\circ}C$; however, the optimum temperature for bacteriocin production was $30^{\circ}C$. The bacteriocin activity was decreased by treatment with methanol, butanol, acetone, or chloroform, however, it was not affected by treatment with ethanol, iso-propanol, or cyclohexane. The inhibitory activity of bacteriocin was stable over a wide range of pHs (2 to 11). The bacteriocin from L. curvatus SE1 killed the indicator strain by a bactericidal mode of action. The bacteriocin from L. curvatus SE1 was partially purified by ethanol precipitation and ion exchange chromatography. SDS-polyacrylamide gel electrophoresis was used to determine the molecular weight of the bacteriocin by the bacteriocin activity test. The apparent molecular mass of the bacteriocin produced by L. curvatus SE1 was about 14 kDa.

  • PDF

Production of Selenium Peptide by Autolysis of Saccharomyces cerevisiae

  • Lee Jung-Ok;Kim Young-Ok;Shin Dong-Hoon;Shin Jeong-Hyun;Kim Eun-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.7
    • /
    • pp.1041-1046
    • /
    • 2006
  • Selenium-containing peptide (selenium peptide) was produced by autolysis of total proteins of Saccharomyces cerevisiae grown with inorganic selenium. Selenium peptide exhibited antioxidant activity as a glutathione peroxidase (GPx) mimic, and its activity was dependent on the hydrolysis methods. The GPx-like activity of the hydrolyzed selenium peptide increased 2.7-folds when digested by protease, but decreased by acid hydrolysis. During the autolysis of the yeast cell, the GPx-like activity and selenium content increased 4.3- and 2.3-folds, respectively, whereas the average molecular weight (MW) of selenium peptide decreased 70%. The GPx-like activity was dependent on the MW of selenium peptide and was the highest (220 U/mg protein) at 9,500 dalton. The maximum GPx-like activity (28,600 U/g cell) was obtained by 48 h of autolysis of the cells, which were precultured with 20 ppm of selenate. Selenium peptide showed little toxicity, compared with highly toxic inorganic selenium. These results show the potential of selenium peptide as a nontoxic antioxidant that can be produced by simple autolysis of yeast cells.

Biodegradation of Feather Waste Keratin by the Keratin-Degrading Strain Bacillus subtilis 8

  • He, Zhoufeng;Sun, Rong;Tang, Zizhong;Bu, Tongliang;Wu, Qi;Li, Chenlei;Chen, Hui
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.2
    • /
    • pp.314-322
    • /
    • 2018
  • Bacillus subtilis 8 is highly efficient at degrading feather keratin. We observed integrated feather degradation over the course of 48 h in basic culture medium while studying the entire process with scanning electron microscopy. Large amounts of ammonia, sulfite, and $\text\tiny{L}$-cysteic acid were detected in the fermented liquid. In addition, four enzymes (gamma-glutamyltranspeptidase, peptidase T, serine protease, and cystathionine gamma-synthase) were identified that play an important role in this degradation pathway, all of which were verified with molecular cloning and prokaryotic expression. To the best of our knowledge, this report is the first to demonstrate that cystathionine gamma-synthase secreted by B. subtilis 8 is involved in the decomposition of feather keratin. This study provides new data characterizing the molecular mechanism of feather degradation by bacteria, as well as potential guidance for future industrial utilization of waste keratin.

Purification and Identification of a Novel Antifungal Protein Secreted by Penicillium citrinum from the Southwest Indian Ocean

  • Wen, Chao;Guo, Wenbin;Chen, Xinhua
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.10
    • /
    • pp.1337-1345
    • /
    • 2014
  • A novel antifungal protein produced by the fungal strain Penicillium citrinum W1, which was isolated from a Southwest Indian Ocean sediment sample, was purified and characterized. The culture supernatant of P. citrinum W1 inhibited the mycelial growth of some plant pathogenic fungi. After saturation of P. citrinum W1 culture supernatants with ammonium sulfate and ion-exchange chromatography, an antifungal protein (PcPAF) was purified. The N-terminal amino acid sequence analysis showed that PcPAF might be an unknown antifungal protein. PcPAF displayed antifungal activity against Trichoderma viride, Fusarium oxysporum, Paecilomyces variotii, and Alternaria longipes at minimum inhibitory concentrations of 1.52, 6.08, 3.04, and $6.08{\mu}g/disc$, respectively. PcPAF possessed high thermostability and had a certain extent of protease and metal ion resistance. The results suggested that PcPAF may represent a novel antifungal protein with potential application in controlling plant pathogenic fungal infection.

Changes in Microflora and Enzyme Activities of Traditional Meju during Fermentation at Sunchang Area (순창지역 메주 발효 중 미생물과 효소역가의 변화)

  • 유진영;김현규
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.3
    • /
    • pp.448-454
    • /
    • 1998
  • Meju for doenjang and kochujang was prepared as a model at Sunchang areaand monitored with major changes. Kochujang meju was prepared on September 12 and doenjang meju on November 12, 1995. Kochjang meju was found to be naturally fermented at 80~90% RH, 15~2$0^{\circ}C$ and doenjang meju was at 80~90% RH and 0~5$^{\circ}C$. The shapes of kochujang meju and doenjang meju were doughnut-type and rectangular, respectively. Weight losses during fermentation were 48% and 28%, respectively. The pH drop and acip production of kochujang meju were negligible. However, pH of doenjang meju decreased from 6.29 to 5.88 and acidity increased from 0.08 to 0.23% as lactic acid. Protein in meju was found to be rapidly solubilized during the early stage of fermentation. Soluble protein cotents of kochujang meju after 7 days and 60 days were 8.23%, respectively. The doenjang mejus were 2.15% after 20 days and 5.72% after 60 days. Soluble suger content increased with the fermentation time. The soluble sugar content was higher in kochjang meju. Acidic protease was highly produced during meju fermentation. $\alpha$-Amylase and $\beta$-amylase were detected in the kochujang meju, of which glutinous rice consisted, but negligible in doenjang meju. Lipase was detected in kochujang meju, but was, negligible in doenjang meju. Microbial population increased drastically after 7 days of fermentation in kochujang meju and 20 days of fermentation in doenjang meju.

  • PDF

Quality Characteristics of Low-Salt Gochujang Added with Glycyrrhiza uralensis and Brassica juncea

  • Lee, So-Young;Park, So-Lim;Yi, Sung-Hun;Nam, Young-Do;Lim, Seong-Il
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.4
    • /
    • pp.348-356
    • /
    • 2011
  • The effects of Glycyrrhiza uralensis and Brassica juncea on the quality and palatability of low-salt gochujang were investigated in terms of the microbial characteristics, enzyme activities, pH, acidity, amino nitrogen and sensory evaluation during 40 days of fermentation. The proliferation of fungi in low-salt gochujang with added G. uralensis and B. juncea were inhibited, while the numbers of total viable bacteria and lactic acid bacteria were not affected. In terms of ${\alpha}$-amylase and ${\beta}$-amylase activity, no significant difference was observed by the salt concentration or additives. However, lowering the salt concentration increased protease activity. The amount of amino-nitrogen in low-salt gochujang at 20 days was similar to that in the control gochujang at 40 days. In the sensory test, low-salt gochujang was preferred compared to control gochujang (8.5% salt). Particularly, the 4.3% salt gochujang with additives was the most preferred.

Molecular cloning of a rhoptry protein (ROP6) secreted from Toxoplasma gondii

  • Ahn Hye-Jin;Kim Seh-Ra;Nam Ho-Woo
    • Parasites, Hosts and Diseases
    • /
    • v.44 no.3
    • /
    • pp.251-254
    • /
    • 2006
  • Monoclonal antibody (mAb) Tg786 against Toxoplasma gondii has been found to detect a 42-kDa rhoptry protein (ROP6) which showed protease activity and host cell binding characteristics after secretion. Using the mAb, a colony containing a 3'-UTR was probed in a T. gondii cDNA expression library. A full length cDNA sequence of the rhoptry protein was completed after 5'-RACE, which consisted of 1,908 bp with a 1,443 bp ORF. The deduced amino acid sequence of ROP6 consisted of a polypeptide of 480 amino acids without significant homology to any other known proteins. This sequence contains an amino terminal stop transfer sequence downstream of a short neutral sequence, hydrophilic middle sequence, and hydrophobic carboxy terminus. It is suggested that the ROP6 is inserted into the rhoptry membrane with both N- and C-termini.

Stereospecific Synthesis of the (2R,3S)- and (2R,3R)-3-Amino-2-hydroxy-4-phenylbutanoic Acids from D-Glucono-δ-lactone

  • Lee, Jin Hwan;Kim, Jin Hyo;Lee, Byong Won;Seo, Woo Duck;Yang, Min Suk;Park, Ki Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.8
    • /
    • pp.1211-1218
    • /
    • 2006
  • The enantiomerically pure (2R,3S)- and (2R,3R)-3-amino-2-hydroxy-4-phenylbutanoic acids (AHPBA) 1 and 3 are readily obtained from D-glucono-a-lactone. Both AHPBAs are the structural key units of KMI derivatives which are the potent inhibitors of BACE 1 ($\beta$-secretase) and HIV protease. Additionally, the obtained AHPBAs 1 and 3 are converted to dipeptides of bestatin stereoisomers 2 and 4.

Antimicrobial Substance of Lactobacillus johnsonii PF01 (락토바실러스 존소니 PF01 균주 유래 항균 활성)

  • Kim, Sang Hoon;Park, Hye Kyun;Hwang, In-Chan;Kang, Dae-Kyung
    • Journal of Dairy Science and Biotechnology
    • /
    • v.38 no.1
    • /
    • pp.53-57
    • /
    • 2020
  • Culture concentrate of probiotic Lactobacillus johnsonii PF01 inhibited the growth of Staphylococcus aureus, which was confirmed by agar well diffusion method. Protease treatment of PF01 culture concentrate indicated that the antimicrobial substance of PF01 was a bacteriocin. Investigation of PF01 genome revealed the existence of a gene similar to that of helveticin, which showed 34.9% and 41.0% identity with those of L. helveticus 481 and L. crispatus K313, respectively, thereby suggesting that the bacteriocin produced by strain PF01 is a helveticin homolog.

Enzyme Profiles of Alga-Lytic Bacterial Strain AK-13 Related with Elimination of Cyanobacterium Anabaena cylindrica

  • Kim, Jeong-Dong;Han, Myung-Soo
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.1
    • /
    • pp.184-191
    • /
    • 2004
  • To investigate bacteria with algalytic activities against Anabaena cylindrica when water blooming occurs and to study enzyme profiles associated with alga-lytic activity, various bacterial strains were isolated from surface waters and sediments in eutrophic lakes or reservoirs in Korea. Among 178 isolates, only nine isolates exhibited lytic abilities against A cylindrica on the agar plates, and then the isolate AK-13 was selected as the strongest in lysing the cyanobacterium A. cytindrica. The strain AK-13 was characterized and identified as Sinorhizobium sp. based on fatty acid methyl ether profiles and 16S rDNA sequence. According to the results of the enzyme assays, in the strain An-13 of Sinorhizobium sp., alginase, amylase, proteinase (caseinase and gelatinase), carboxymethyl-cellulase (CMCase), laminarinase, and lipase was produced, namely CMCase, laminarinase and protease were highly active. None of glycosidase was produced. Therefore, enzyme systems of Sinorhizobium sp. AK-13 were very complex to degrade cell walls of A. cylindrica. The peptidoglycans of A. cylindrica mat be hydrolyzed and metabolized to a range of easily utilizable monosaccharides or other low molecular weight organic substances by Sinorhizobium sp. AK-13.