Stercospecific Synthesis of the ($2 R, 3 S$)- and ($2 R, 3 R$)-3-Amino-2-hydroxy-4phenylbutanoic Acids from D-Glucono- δ-lactone

Jin Hwan Lee, Jin Hyo Kim, Byong Won Lee, Woo Duck Seo, Min Suk Yang, and Ki Hun Park*
Division of Applied Life Science (BK2 I Program), Department of Agriculhural Chemistry, Research Institute of Life Science, Gyeongsang Nationat University, Jinu 660-701, Korea. "E-mail. khpark(ilgsmu.ac. kr

Received May 6. 2006

Abstract

The enantiomerically pure ($2 R, 3 S$) - and ($2 R, 3 R$)-3-amino-2-hydroxy-4-phenylbutanoic acids ($\mathrm{AIIPB} \Lambda$) $\mathbf{1}$ and 3 are readily obtained from D-glucono- δ-lactone. Both NIIPB \wedge s are the stuctural key units of KMl derivatives which are the potent inhibitors of BACL, 1 (β-secretase) and IIIV protease. Additionally, the obtained AIIPBAs $\mathbf{1}$ and $\mathbf{3}$ are converted to dipeptides of bestatin stereoisomers $\mathbf{2}$ and 4.

Key Words : α-Hydroxy- β-amino acid, (2R,3S)-AHPBA, BACE. 1, Bestatin stercoisomer, D-Glucono- $\mathcal{\delta}$-lactone.

Introduction

α-Hydroxy- β-amino acids are key components of numerous organic substances. These important compounds have been shown to act as substrates for the synthesis of peptide isosteres ${ }^{1}$ and are constituents of several natural products that exhibit potent biological activity such as bestatin, dideoxykanamycin A, microginin, and paclitaxel. ${ }^{-}$The synthesis of α-hydroxy- β-amino acids has therefore attracted a considerable amount of interest in recent years and several approaches have been developed to effect their synthesis. ${ }^{3}$ A particularly important set of α-hydroxy- β-amino acids, the diastereomers of 3-amino-2-hydroxy-4-phenybutanoic acid (AHPBA), are very attractive because of their biological and medicinal roles, ${ }^{2 a t}$ and because they are chiral synthons for many bioactive compounds. ${ }^{2.4 .5}(2 R, 3.5)$-AHPBA, phenylnorstatine (Pns) 1, is an important component of BACE1 (β secretase) inhibitor such a KMI-008 and KMI-370 (Figure 1). ${ }^{6}$ In addition, it is the key component of KMI-062, which is an octapeptide containing a hydroxymethyl carbonyl (HMC) isostere as a transition-state analogue (Figure 1). ${ }^{7} \mathrm{~A}$ wide range of synthetic routes to AHPBA have been attempted using chiral glyoxylate methodology, ${ }^{2 h}$ cyanohydrin chemistry of α-aminoaldehydes, ${ }^{36.8}$ epoxide opening by azide ion. ${ }^{9}$ and hydroxamination of a substituted alkene, ${ }^{11}$ respectively. Unfortunately, these protocols were unable to control the absolute configuration within C-2 and C-3,
leading to low overall yields. In our previous paper, we described the stereoselective synthesis of $(2 S, 3 R)-,(2 S, 3 S)$ AIIPBA, and (-)-bestatin from sugar. ${ }^{\text {I }}$ In this paper, to further demonstrate of the versatility of the above synthetic strategy, we describe the synthesis of $(2 R, 3 S)$ - and $(2 R, 3 R)$ AHPBAs 1 and 3 via synthetic techniques from enantiopure D-glucono- δ lactone. The enantiomerically pure AHPBAs 1 and 3. thus obtained were easily used to effect simple the syntheses of (-)-bestatin stereoisomers 2 and 4 (Figure 2).

Results and Discussion

The absolute configuration within C 2 and C 3 in the target molecules $\mathbf{1}$ and $\mathbf{3}$ were transferred from those of C 2 and C 3 in D-glucono- δ-lactone, the starting material. The absolute stereochemistry within $C 2$ of the target molecule was controlled through the stereodivergent formation of an oxirane ring. The formation of the benzyl unit in the target molecules 1 and $\mathbf{3}$ were carried out via nucleophilic addition of phenylmagnesium bromide to the oxirane ring.
(2R,3S)-AHPBA 1 and $N-[(2 R, 3 S)$-3-amino-2-lyydroxy-4-phenylbutanoyl]-L-leucine 2 . The synthesis commenced from glucitol 5 which was easily accessed wia reduction of D-glucono- δ-lactone with $\mathrm{NaBH}_{\text {, }}$ reported in the previous manuscript. ${ }^{11}$ To effect the stereodivergent synthesis of ($2 R, 3 S$)-AHPBA 1 and ($2 R, 3 R$)-AHPBA 3 from the glucitol 5 , the most important transformation was the inversion of

Figure 1. Structures of KMI-008 and KMI-062.

Figure 2. Retrosynthesis of Target Molecules 1-4.
the configuration of C3 in AHPBA numbering. This was started from the selective silylation of the primary hydroxyl group in diols 5. Treatment of TBDMSC. to the diol 5 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave the secondary alcohol 6 in 94% yield. Subsequent mesylation of the hydroxyl group gave 7, which when reacted with BuNF at room temperature enacted desilyation/intramolecular mesylate displacement to give the epoxide 8 in 88% yield. The epoxide 8 was then reacted with PhMgBr in the presence of CuI at $-40^{\circ} \mathrm{C}$ to give the alcohol 9 regioselectively in 94% yield. The N-Pf protected amine 10 was prepared in 63% yield from the secondary alcohol 9 according to our recently published methodology, "involving the use of a pre-cooled solution of $\mathrm{Ti}_{2} \mathrm{O}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at -10 " C . which suppressed epimerization during the reaction. The 9 -phenyl-9-fluorenyl (Pf) group was chosen to protect the amino group as it is to be not only stable under basic conditions but also stable to organometallic reagents (Scheme 1). ${ }^{12}$ The terminal isopropylidene group was selectively cleaved by treating diisopropylidene 10 with Dowex $50-\mathrm{X} 8$ resin to give the diol 11 in 92% yield. ${ }^{13}$ The diol 11 was then treated with NaIO_{4} in EtOH- $\mathrm{H}_{2} \mathrm{O}(2: 1)$ at room temperature, and the resulting aldehyde was reduced with NaBH_{4}, leading to the formation of the alcohol 12 in 90% overall yield. After mesylation of the alcohol $\mathbf{1 2}$ with MsCl in THF, the resulting mesylate $\mathbf{1 3}$ was treated with LiI at $80^{\circ} \mathrm{C}$ to give the iodide $\mathbf{1 4}$ in $\mathbf{9 2} \%$ yield. Treatment of the iodide $\mathbf{1 4}$ with n - BuLi in THF at $-40^{\circ} \mathrm{C}$ generated $(3 S, 45)$ chiral aminoalcohol $15\left\{[\alpha]_{\mathrm{D}}^{20}-4.9^{\circ}\left(c 1.35, \mathrm{CHCl}_{3}\right)\right\}$ in 90% yield through simultaneous dealkoxyhalogenation (Scheme 1). ${ }^{1.3}$

The secondary hydroxyl group of the aminoalcohol 15 was easily protected with BnBr in THF to give the benzylate 16 in 91% yield. Ozonolysis of the olefin within benzylate 16 and subsequent $\mathrm{H}_{2} \mathrm{O}_{2}$-mediated oxidation afforded
protected (2R,3S)-3-amino-2-hydroxy-4-phenylbutanoic acid 17. To remove the Pf and Bn protecting groups, protected $(2 R, 3 S)$-AHPBA 17 was treated with H_{2} and 10% Pd / C in MeOH at $70^{\circ} \mathrm{C}$ and subsequently purified by ionexchange chromatography through Dowex $50 \mathrm{~W}-\mathrm{X} 8$ resin. To the free base I was added cone. HCl and co-evaporated with toluene to give ($2 R, 3 S$)-AHPBA 1 as its hydrochloride salt. This methodology has been applied to the synthesis of (-)-bestatin stereoisomer 2 which requires the coupling of two structural units, N-terminal $(x$-hydroxy- β-amino acid [($2 R, 3 S)$-AHPBA 1] and C-terminal amino acid leucine. The coupling reaction of 17 with (S)-leucine methyl ester was carried out in the presence of DCC to afford the dipeptide product 18 in 89% yield. Treatment of 18 with LiOH followed by exposure to H_{2} over Pd / C gave $(2 R, 3 S)$-bestatin stereoisomer $\mathbf{2}$ in 89% yield (Scheme 2).
($2 R, 3 R$)-AHPBA 3 and N - $[(2 R, 3 R)$-3-amino- 2 -hydr-oxy-4-phenylbutanoyl]-L-leucine 4 . The effect the synthesis of $(2 R, 3 R)$-AHPBA 3, conversion of diol 5 to the corresponding epoxide 21 with retention of C 2 stereochemistry was required. Thus, the diol 5 was treated with MsCl in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-40^{\circ} \mathrm{C}$ to give the primary mesylate 20. The treatment of the monomesylate 20 with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in methanol afforded the epoxide 21 in quantitative yield (Scheme 3). Oxirane 21 was then subjected to the same reaction conditions to those already described above (compound $8 \rightarrow$ compound 15) to afford ($3 R, 4 R$)-aminoalcohol $22\left\{[\alpha]_{D}^{20}-8.2^{1 \prime}\left(c 2.00, \mathrm{CHCl}_{3}\right)\right\}$. After O-benzylation of the chiral aminoalcohol 22, the resulting benzylate was subjected to ozonolysis followed by hydrogenolysis employing the same protocol to that used to convert the compound 1 to $(2 R, 3 R)$-AHPBA 3. After protection of the secondary alcohol 22 with BnBr , vinyl group in the protected alcohol was converted to phenylbutanoic acid by ozonolysis. The

D-glucono- δ-lactone

8

6: $\mathrm{R}=\mathrm{H}$

\downarrow vi

12: $\mathrm{R}=\mathrm{H}$
-13: $R=M s$

Scheme 1. Reagents and conditions; (i) ref. 11,14 ii) a) TBDMSCl, imidazole, $\mathrm{Cl}_{2} \mathrm{Cl}_{2}, \mathrm{It}_{2} 94 \%$, c) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{TlHF}, 0^{\circ} \mathrm{C}$, 94%; (iii) Bu ${ }_{+} N F$, THF, $\mathrm{rt}, 88 \%$; (iv) $\mathrm{PhMgBr}, \mathrm{CuI}, \mathrm{THF},-40^{\circ} \mathrm{C}$, 94%; (v) a) $\mathrm{Tr}_{2} \mathrm{O}$, Pyridine, $\mathrm{C}_{2} \mathrm{Cl}_{2},-10{ }^{\circ} \mathrm{C}, ~ 96 \%$, b) $\mathrm{NaN}_{3}, \mathrm{DMF}$, $\mathrm{rr}, 96 \%, \mathrm{c}^{2} \mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{ElOAc}, \mathrm{ri}, 85 \%$, d) $\mathrm{Pf}-\mathrm{Br}, \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}, \mathrm{Et}_{3} \mathrm{~N}$, $\mathrm{ClH}_{2} \mathrm{Cl}_{2}$, it, 80%; (vi) Dowex $50 \mathrm{~W}-\mathrm{X} 8$, MeOII, nt, 92%; (vii) a) $\mathrm{NaIO}_{4}, \mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}$ (2 : I), It, $\mathrm{NaBH}_{4}, 0^{\circ} \mathrm{C}, 90 \%$, b) $\mathrm{MsCl}^{\mathrm{C}}, \mathrm{Et}_{3} \mathrm{~N}$, THF, $0{ }^{\prime \prime} \mathrm{C}, 97 \%$; (viii) LiI, DMF, $80^{\prime \prime} \mathrm{C}, 92 \%$, (ix) a) $n-$ BuLi, THF, $-40{ }^{\circ} \mathrm{C}, 90 \%$, b) $33 \mathrm{nl3r}, 60 \% \mathrm{NaII}, 134+\mathrm{NI}, \mathrm{TlIF}, 0{ }^{\circ} \mathrm{C}, 91 \%$.
reaction of the protected $A H P B A$ with leucine methyl ester was carried out wia coupling reaction. The product dipeptide 23 was subjected to the deprotection sequence already described above (compound $\mathbf{1 8} \rightarrow$ compound $\mathbf{2}$) methods to afford ($2 R, 3 R$)-bestatin stereoisomer (4) (Scheme 3).
To establish the relative configuration within amino alcohols 15 and 22, they were separately converted to the corresponding oxazolidinone $\mathbf{1 5 a}$ and 22a by reaction with carbonydiimidazole after Pd-mediated hydrogenolysis of the N-Pf group. The relative stereochemistry within the oxazolidinones 15 a and 22 a was shown by analysis of the coupling constants: a large coupling constant was shown by

Scheme 2. Reagents and conditions; (i) $\mathrm{O}_{3}, \mathrm{MeOH}_{1}-78{ }^{\prime} \mathrm{C}, 30 \%$ $\mathrm{H}_{2} \mathrm{O}_{2}$, rt. 94%; (ii) $\mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}$, $\mathrm{MeOH}, 70{ }^{\circ} \mathrm{C}, 85 \%$; (iii) (S)-
 $\mathrm{Tl} \mathrm{JF}-\mathrm{II}_{2} \mathrm{O}(2: 1), 0^{\circ} \mathrm{C}, 89 \%$; (v) $\mathrm{H} \mathrm{I}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{McOlI}, 70^{\circ} \mathrm{C}, 89 \%$.

Scheme 3. Reagents and conditions; (i) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-40$ ${ }^{\circ} \mathrm{C}, 81 \%$; (ii) $\mathrm{K}_{3} \mathrm{CO}_{3}$, MeOII, rt, 92%; iii) ref. 1 I ; (iv) a) $\mathrm{BnHr}, 60 \%$ $\left.\mathrm{Nall}, \mathrm{Bu}_{4} \mathrm{Nl}, \mathrm{TIIF}, 0^{\circ} \mathrm{C}, \mathrm{b}\right) \mathrm{O}_{3}$, MeOII, $78{ }^{\circ} \mathrm{C}, ~ 30 \% \mathrm{I}_{2} \mathrm{O}_{2}, ~ \mathrm{rt}$, c) $\mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, 70^{\circ} \mathrm{C}$; (v) a) $\mathrm{BnBr}, 60 \% \mathrm{NaH}, \mathrm{Bu}_{1} \mathrm{Nl}$, THF, $0{ }^{\prime \prime} \mathrm{C}$, b) $\left.\mathrm{O}_{3}, \mathrm{MeOH},-78{ }^{4} \mathrm{C}, 30 \% \mathrm{H}_{2} \mathrm{O}_{2}, ~ r 1, ~ c\right) ~(S)$-Leu- OCH_{3}, IIOIST, TSOH, DCC, $\mathrm{It}_{3} \mathrm{~N}, \mathrm{THF}, 0^{\circ} \mathrm{C}$; (vi) a) [iOII, THF-I $\mathrm{I}_{2} \mathrm{O}$ (2: 1), $0^{\circ} \mathrm{C}, ~$ b) $\mathrm{II}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{MeOII}, 70^{\circ} \mathrm{C}$.

15a ($/ 3.4=11-13 \mathrm{~Hz}$), consistent with a $3,4-$ syn relationship whereas 22a exhibited a smaller coupling constant ($J_{3,4}=6-$

Figure 3. Slereochemistry of compounds 15 and 22.
$8 \mathrm{H} \%$), consistent with a 3,4 -anti arrangement. NOESY experiments were also consistent with this analysis: strong correlation was observed between $\mathrm{H}_{3}-\mathrm{H}_{4}$ and $\mathrm{H}_{2}-\mathrm{H}_{5}$ in compound 22a, whereas weak correlation was observed between $\mathrm{H}_{3}-\mathrm{H}_{4}$ in compound 15a (Figure 3).

Conclusions

The amino alcohols 15 and 22, important precursors of α -hydroxy- β-amino acids, have been prepared from T -gluco-no- $\mathcal{\delta}$-lactone via simultancous dealkoxyhalogenation and stereodivergent formation of the oxirane. Chiral synthons 15 and 22 were used to effeet the synthesis of enantiomerically pure ($2 R, 35$)- and ($2 R, 3 R$)-AHPBAs $\mathbf{1}$ and 3. Furthemore suecessful coupling of the protected AHPBAs with leucine methyl ester and ensuing deprotection furnished the stereoisomers of bestatin 2 and 4.

Experimental Section

General. All non-aqueous reaction was carried out under an inert nitrogen atmosphere. THF was distilled from $\mathrm{Na} /$ benzophenone: 2,2-dimethoxypropane, DMF, and methylene chloride were distilled from CaH_{2}. Column chromatography was carried out using 230-400 mesh silica gel. The final solution before evaporation was washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. All melting points were measured on a Thomas Scientific Capillary Melting point apparatus and are uncorrected. IR spectra were recorded on a Bruker IFS66 infrared Fourier transform spectrophotometer. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ experiments were conducted on Bruker AW-500 spectrometer. EIMS data were collected on a JEOLIMS-700 mass spectrometer. Optical rotations were measured on a JASCO DIP-1000 polarimeter and $[\alpha]_{D}$ values are given in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$.

3,4;5,6-Di-O-isopropylidene-D-glucitol (5). This was prepared from D-glucono- δ-lactone through previously reported method. " The spectroscopic data of 5 was consistent with that of the reported. ${ }^{14}$

3,4;5,6-Di- O-isopropylidenc-1- O-tert-butyldimethylsilyl-D-glucitol (6). To a solution of the diol $5(3.00 \mathrm{~g}, 11.44$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(57 \mathrm{~mL})$ were added imidazole (1.56 g ,
$22.87 \mathrm{mmol})$ and $\operatorname{TBDMSCl}(3.45 \mathrm{~g}, 22.87 \mathrm{mmol})$ at room temperature. After stirring the mixture for l h , saturated aqueous $\mathrm{NaHCO}_{3}(60 \mathrm{mI}$) was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{mI} \times 3)$. After concentration of the combined extracts, the residue was chromatographed on silica gel [hexane-FiOAc (4:1)] to give compound 6 (4.05 $\mathrm{g}, 94 \%$) as an oil, $[\alpha]_{\mathrm{D}}^{20}+1.7^{\circ}$ (c $2.65, \mathrm{CHCl}_{3}$); IR (ncat): $3517,3056,3012 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MH} /, \mathrm{CDCl}_{3}$) $\delta 0.00$ $(\mathrm{s}, 6 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 1.25-1.33(\mathrm{~m}, 12 \mathrm{H}), 2.29(\mathrm{~d}, J=7.8 \mathrm{~Hz}$. , $1 \mathrm{H}), 3.58(\mathrm{dd}, J=10.1,6.2 \mathrm{H}, 1 \mathrm{H}), 3.62(\mathrm{dd}, J=10.1,6.3$ $\mathrm{H} \angle, 1 \mathrm{H}), 3.69(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{dd}, 1 \mathrm{H}, J=8.3,5.0 \mathrm{H} \leftrightharpoons, 1 \mathrm{H})$, $3.90-3.99(\mathrm{~m}, 3 \mathrm{H})$, and $4.05(\mathrm{dd}, J=8.3,5.8 \mathrm{H} \angle, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MH ,, CDCl_{3}) $\delta-5.0,-5.0,18.7,25.7,26.2,27.0$, $27.3,27.5,65.1,68.2,70.7,77.6,77.7,80.1,109.9$, and 110.0 (Found; C, $57.41 ; \mathrm{H}, 9.63 . \mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{6} \mathrm{Si}$ requires C , 57.41 ; H, 9.64%).

3,4;5,6-Di- O-isopropylidene-2- O-methanesulfonyl-1- O -tert-butyldimethylsilyl-D-glucitol (7). To a solution of compound $6(3.50 \mathrm{~g}, 9.29 \mathrm{mmol})$ in THF (45 mL .) were added triethylamine (2.60 mL ., 18.59 mmol) and MsCl (1.44 $\mathrm{mL}, 18.59 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stired for 10 min at room temperature, and then was quenched with saturated aquecous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL}$). The reaction mixture was extracted with ElOAc (50 mL .). The organic phase was separated and the aqueous phase was extracted with EiOAc ($40 \mathrm{~mL} \times 3$). After coneentration of the combined extracts, the resulting residue was chromatographed on silica gel [hexanc-TtOAc (6:1)] to give compound $7(3.98 \mathrm{~g}, 94 \%)$ as an oil; $[\alpha]_{\mathrm{D}}^{20}-0.5^{\circ}\left(c^{\circ} 3.30, \mathrm{CHCl}_{3}\right)$; IR (neat): 3056, 3011, $2968 \mathrm{~cm}^{1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MH} \angle, \mathrm{CDCl}_{3}\right) \delta 0.00(\mathrm{~s}, 6 \mathrm{H}), 0.81$ $(\mathrm{s}, 9 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H})$, $3.01(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{dd}, J=11.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.86(\mathrm{~m}$, $2 \mathrm{H}), 3.89(\mathrm{dd}, J=14.9,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~m}, 1 \mathrm{H}), 4.05-4.07$ $(\mathrm{m}, 2 \mathrm{H})$, and $4.70(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MH} /, \mathrm{CDCl}_{3}$) $\delta-5.4,-5.4,18.4,25.3,25.9,26.3,26.7,27.3,38.9,63.1$, $67.6,76.8,77.1,77.4,78.4,81.3,110.0$, and 110.3 (Found; $\mathrm{C}_{4}, 50.19 ; \mathrm{H}, 8.43$. $\mathrm{C}_{19}, \mathrm{H}_{38} \mathrm{O}_{8} \mathrm{SS}$ i requires $\mathrm{C}, 50.19 ; \mathrm{H}, 8.42 \%$).

1,2-Anhydro-3,4;5,6-di- O-isopropylidenc-D-mannitol (8). To a solution of compound $7(4.00 \mathrm{~g}, 8.80 \mathrm{mmol})$ in THF (44 mL) was added Bu $\mathrm{N}_{1} \mathrm{NF}(3.45 \mathrm{~g}, 13.20 \mathrm{mmol})$. After stirring for 3 h at room temperature, the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and extracted with EtOAc ($50 \mathrm{~mL} \times 3$). The combined extracts were evaporated, and then the residue was chromatographed on silica gel [hexaneEtOAc (12:1)] to give compound $8(1.90 \mathrm{~g}, 88 \%)$ as an oil; $[\alpha]_{\mathrm{D}}^{20}+4.2\left(c \quad 1.15, \mathrm{CHCl}_{3}\right)$; IR (neat): $3051,3016,2982$ cm^{-1}; 'H NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.35-1.42(\mathrm{~m}, 12 \mathrm{H})$, $2.82(\mathrm{~m}, 2 \mathrm{H}), 3.20(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=$ $10.54,4.85 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~m}, 1 \mathrm{H})$, and $4.11(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ $\operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 25.2,26.6,26.7,27.1,44.2,51.9$, 67.4, 76.7, 78.7, 78.9, 109.8, and 110.7 (Found; C, 59.01 ; H , 8.24. $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{5}$ requires $\mathrm{C}, 59.00 ; \mathrm{H}, 8.25 \%$).

1-Deoxy-3,4;5,6-di-O-isopropylidene-1-phenyl-D-mannitol (9). To a solution of CuI ($0.94 \mathrm{~g}, 4.91 \mathrm{mmol})$ in THF (30 mL) at $-40^{\circ} \mathrm{C}$ under N_{2} was added dropwise 1.0 M $\mathrm{PhMgBr}(24.56 \mathrm{~mL}, 24.56 \mathrm{mmol}, 200 \mathrm{~mol} \%$) over 15 min . After stirring for 10 min , a solution of epoxide $8(4.50 \mathrm{~g}$,
18.42 mmol) in THF (50 mL) was added dropwise over a period of 20 min at the same temperature. After additional stirring for 1 h , the reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(60 \mathrm{~mL})$. The mixture was extracted with $\operatorname{EtOAc}(50 \mathrm{~mL} \times 3)$, and the combined organic layer was concentrated. The resulting residue was chromatographed on silica gel [hexane-EtOAc (12:1)] to give compound 9 $(3.70 \mathrm{~g}, 94 \%)$ as an oil, $[\alpha]_{\mathrm{D}}^{20}+2.88^{\circ}\left(c 2.00, \mathrm{CHCl}_{3}\right)$; IR (neat): $3502,3027,2968,1604 \mathrm{~cm}^{-1},{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.2-1.4(\mathrm{~m}, 12 \mathrm{H}), 2.75(\mathrm{dd}, J=13.9,8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.09(\mathrm{dd}, J=13.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.79(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~m}$, $1 \mathrm{H}), 3.99(\mathrm{~m}, 1 \mathrm{H}), 4.06(\mathrm{~m}, 1 \mathrm{H}), 4.17(\mathrm{dd}, J=8.5,6.1 \mathrm{~Hz}$, $1 \mathrm{H})$, and $7.20-7.46(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} 125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $25.2,26.5,26.9,27.0,39.7,67.9,73.1,76.4,81.1,82.8$, $109.3,110.2,126.2,128.2,129.8$, and 138.5 (Found; C, $67.04 ; \mathrm{H}, 8.13 . \mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}$, requires $\left.\mathrm{C}, 67.06 ; \mathrm{H}, 8.13 \%\right)$.

1,2-Dideoxy-3,4;5,6-di- O-isopropylidene-1-phenyl-2-[(9-phenyl-9-fluorenyl)-aminol-D-glucitol (10). To a solution of mannitol $9(0.70 \mathrm{~g}, 2.17 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at -10 ${ }^{\circ} \mathrm{C}$ were added pyridine $(0.52 \mathrm{~mL}, 6.51 \mathrm{mmol})$ dropwisely over a period of 5 min and an ice-cooled solution of $\mathrm{Tf}_{2} \mathrm{O}$ $(0.55 \mathrm{~mL}, 3.26 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The reaction mixture was stirred for 10 min at $-10^{\circ} \mathrm{C}$, and then was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$. The organic layer was washed with saturated aqueous $\mathrm{CuSO}_{4}(12$ mL) and was evaporated to give the triflate ($0.96 \mathrm{~g}, 96 \%$), which was used without further purification. The mixture of the triflate $(0.96 \mathrm{~g}, 2.10 \mathrm{mmol})$ and $\mathrm{NaN}_{3}(0.41 \mathrm{~g}, 6.27$ mmol) in DMF (10 mL) was stirred for 2 h at room temperature. The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and extracted with EtOAc ($40 \mathrm{~mL} \times 3$). After evaporation of the organic layer, the remaining residue was chromatographed to give the azido compound $(0.70 \mathrm{~g}, 96 \%)$. This compound was directly hydrogenated with $10 \% \mathrm{Pd} / \mathrm{C}(0.07$ $\mathrm{g})$ in $\mathrm{EtOAc}(10 \mathrm{~mL})$ to the corresponding free amine $(0.55$ $\mathrm{g}, 85 \%)$. To the solution of the free amine $(0.55 \mathrm{~g}, 1.71$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ was added 9-phenyl-9-fluorenyl bromide ($\mathrm{Pf}-\mathrm{Br}$) ($0.83 \mathrm{~g}, 2.57 \mathrm{mmol}$), $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(0.85 \mathrm{~g}, 2.57$ $\mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}(0.47 \mathrm{~mL}, 3.42 \mathrm{mmol})$. After stirring for 24 h at room temperature, the mixture was filtrated, poured into excess $\mathrm{H}_{2} \mathrm{O}$, and the organic layer was separated, then the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL} \times 3)$. After concentration of the combined extracts, the resulting residue was chromatographed on silica gel [hexane-EtoAc (25:1)] to give compound $10(0.80 \mathrm{~g}, 80 \%)$ as a solid, $\mathrm{mp} 53-57^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{20}+84.4^{\circ}\left(c 6.00, \mathrm{CHCl}_{3}\right) ; \operatorname{IR}(\mathrm{KBr}): 3309,3027,2992$, $1602 \mathrm{~cm}^{-1} ;{ }^{\prime} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.14(\mathrm{~s}, 3 \mathrm{H}), 1.17$ $(\mathrm{s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{dd}, J=12.6,5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.43(\mathrm{dd}, J=12.6,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{~m}, 1 \mathrm{H}), 3.43(\mathrm{~m}$, 1 H), 3.53 (dd, $J=6.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.46(\mathrm{~m}, 2 \mathrm{H}), 4.14$ $(\mathrm{m}, 1 \mathrm{H})$, and $6.66-7.20(\mathrm{~m}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 25.3,26.1,26.6,27.4,40.4,54.4,66.5,72.3,76.1$, $78.8,99.3,108.5,109.1,119.8,120.1,125.5,125.6,125.9$, $126.6,127.0,127.7,128.0,128.0,128.1,128.2,128.3$, 129.3, 139.7, 140.4, 145.8, 149.9, and 151.2 (Found; C, $79.11 ; \mathrm{H}, 6.98 ; \mathrm{N}, 2.51 . \mathrm{C}_{37} \mathrm{H}_{39} \mathrm{NO}_{4}$ requires $\mathrm{C}, 79.11 ; \mathrm{H}$, 7.00 ; N, 2.49%).

1,2-Dideoxy-3,4- O-isopropylidene-1-phenyl-2-[(9-phen-yl-9-fluorenyl)-aminoj-D-glucitol (11). To a solution of the N -protected compound $10(4.00 \mathrm{~g}, 7.12 \mathrm{mmol})$ in 90% $\mathrm{MeOH}(40 \mathrm{~mL})$ was added Dowex $50 \mathrm{~W}-\mathrm{X} 8$ resin $(0.40 \mathrm{~g})$ at room temperature. After stirring for 24 h , the reaction mixture was filtered, and then the filtrate was evaporated. The resulting residue was chromatographed on silica gel [hexane-EtOAc (3:1)] to give the diol $11(3.40 \mathrm{~g}, 92 \%)$ as a solid, mp $72-74^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}+60.7^{\circ}\left(c 1.66, \mathrm{CHCl}_{3}\right) ; \mathrm{R}(\mathrm{KBr})$: $3487,3347,3053,3004,1600 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.03(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{dd}, J=13.6,10.9$ $\mathrm{Hz}, 1 \mathrm{H}), 2.69(\mathrm{dt}, J=10.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{dd}, J=13.6$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{dd}, J=8.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~m}, 1 \mathrm{H})$, $3.78(\mathrm{~m}, 1 \mathrm{H}), 3.85-3.92(\mathrm{~m}, 2 \mathrm{H})$, and $5.75-7.71(\mathrm{~m}, 18 \mathrm{H})$; ${ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 26.3,26.9,36.3,54.7,64.8$, $71.8,72.8,76.1,80.7,100.7,107.8,119.6,120.4,124.5$, $125.6,126.3,126.7,127.4,128.1,128.5,128.7,128.9$, $129.0,129.7,137.8,140.2,140.9,143.4,147.5$, and 148.3 (Found; C, $78.30 ; \mathrm{H}, 6.77 ; \mathrm{N}, 2.69 . \mathrm{C}_{3}{ }_{4} \mathrm{H}_{35} \mathrm{NO}_{4}$ requires C , $78.28 ; \mathrm{H}, 6.76$; N, 2.69\%).

1,2-Dideoxy-3,4- O-isopropylidene-1-phenyl-2-[(9-phen-yl-9-fluorenyl)-aminol-D-xylitol (12). To a solution of the diol $11(3.50 \mathrm{~g}, 6.70 \mathrm{mmol})$ in $\mathrm{EtOH}: \mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL}: 25 \mathrm{~mL})$ was added $\mathrm{NaIO}_{4}(2.15 \mathrm{~g}, 10.06 \mathrm{mmol})$ at room temperature. After stirring for 3 h , the mixture was cooled to $0^{\circ} \mathrm{C}$, and then $\mathrm{NaBH}_{4}(0.38 \mathrm{~g}, 10.06 \mathrm{mmol})$ was added and stirred for 10 min . After evaporation of EtOH , the mixture was poured into excess of $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{EtOAc}(50 \mathrm{~mL} \times 3)$. After concentration of the combined extracts, the residue was chromatographed on silica gel [hexane-EtOAc (8:1)] to give compound $12(2.97 \mathrm{~g}, 90 \%)$ as a solid, $\mathrm{mp} 57-60^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{20}+103.6^{\circ}\left(c 1.00, \mathrm{CHCl}_{3}\right) ; \mathbb{R}(\mathrm{KBr}): 3492,3345,3061$, $3007,1601 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.10(\mathrm{~s}$, $3 \mathrm{H}), 1.37(\mathrm{~s}, 1 \mathrm{H}), 2.38(\mathrm{dd}, J=13.3,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~m}$, $1 \mathrm{H}), 2.87(\mathrm{dd}, J=13.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{dd}, J=8.7,2.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.41(\mathrm{dd}, J=10.9,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=10.9$, $4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~m}, 1 \mathrm{H})$, and $6.17-7.68(\mathrm{~m}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ $\operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 26.6,27.1,37.6,54.3,62.5,72.8$, $75.9,80.1,107.7,119.7,120.2,124.9,125.8,126.1,126.4$, $127.4,127.9,128.2,128.3,128.5,128.7,128.8,129.5$, $138.2,140.2,140.9,144.0,148.7$, and 148.8 (Found; C, 80.62; $\mathrm{H}, 6.79 ; \mathrm{N}, 2.85 . \mathrm{C}_{33} \mathrm{H}_{33} \mathrm{NO}_{3}$ requires $\mathrm{C}, 80.62 ; \mathrm{H}$, 6.77 ; N, 2.85\%).

1,2-Dideoxy-3,4- O-isopropylidene- $5-O$-methanesulfonyl-1-phenyl-2-[(9-phenyl-9-fluorenyl)-amino]-D-xylitol (13). To a solution of alcohol $12(2.00 \mathrm{~g}, 4.07 \mathrm{mmol})$ in THF (20 mL) were added triethylamine ($1.13 \mathrm{~mL}, 8.23 \mathrm{mmol}$) and methanesulfonyl chloride $(0.63 \mathrm{~mL}, 8.23 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 10 min at room temperature, and then was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(40$ mL). The organic phase was separated and the aqueous phase was extracted with EtOAc ($40 \mathrm{~mL} \times 3$). After concentration of the combined extracts, the resulting residue was chromatographed on silica gel [hexane-EtOAc (12:1)] to give compound $13(2.25 \mathrm{~g}, 97 \%)$ as a solid, $\mathrm{mp} 50-51^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{20}+115.7^{\circ}\left(c 1.40, \mathrm{CHCl}_{3}\right)$; IR (KBr): $3345,3065,3021$, $2985,1605 \mathrm{~cm}^{-1},{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.30(\mathrm{~s}$,
$3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 2.26-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{~m}, 1 \mathrm{H}), 2.76(\mathrm{~s}$, $3 \mathrm{H}), 3.36(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{dd}, J=11.1,6.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.86(\mathrm{dd}, J=11.1,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~m}, 1 \mathrm{H})$, and $6.56-$ $7.77(\mathrm{~m}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 26.7,27.4$, $37.3,40.2,53.6,69.0,72.4,74.2,76.9,109.1,120.0,120.2$, $125.4,125.7,126.0,126.1,127.3,128.1,128.2,128.4$, $128.4,128.5,128.7,129.0,138.9,140.2,140.8,145.0$, 148.9 , and 151.1 (Found; C, 71.68 ; H, 6.20; N, 2.44. $\mathrm{C}_{34} \mathrm{H}_{35} \mathrm{NO}_{5} \mathrm{~S}$ requires $\mathrm{C}, 71.68 ; \mathrm{H}, 6.19 ; \mathrm{N}, 2.46 \%$).
1,2,5-Trideoxy-3,4-O-isopropylidene-5-iodo-1-phenyl-2-[(9-phenyl-9-fluorenyl)-amino]-D-xylitol (14). To a solution of the mesylate $13(1.50 \mathrm{~g}, 2.63 \mathrm{mmol})$ in DMF (15 $\mathrm{mL})$ was added $\mathrm{LiI}(1.06 \mathrm{~g}, 7.90 \mathrm{mmol})$. After stirring of the mixture for 12 h at $80^{\circ} \mathrm{C}$, saturated aqueous $\mathrm{NaHCO}_{3}(40$ mL) was added and the mixture was extracted with EtOAc ($30 \mathrm{~mL} \times 3$). The extract was evaporated and the remaining residue was chromatographed on silica gel [hexane-EtOAc (20:1)] to give compound $14(1.45 \mathrm{~g}, 92 \%)$ as a solid, mp $45-47^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}+115.1^{\circ}\left(c 1.60, \mathrm{CHCl}_{3}\right)$; IR (KBr): 3329, $3071,3018,2967,1601 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $1.36(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 2.16-2.24(\mathrm{~m}, 3 \mathrm{H}), 2.63(\mathrm{dd}, J=$ $10.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.72$ (dd, $J=10.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{~d}, J$ $=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~m}, 1 \mathrm{H})$, and $6.55-7.79(\mathrm{~m}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.8,27.2,27.6,30.9,40.7,53.6$, $72.4,75.8,77.6,80.7,108.4,120.0,120.1,125.6,125.7$, $125.8,126.1,127.2,128.1,128.1,128.2,128.4,128.5$, $128.6,129.1,138.9,140.2,140.8,145.2,149.1$, and 151.4 (Found; C, $65.90 ; \mathrm{H}, 5.36 ; \mathrm{N}, 2.35 . \mathrm{C}_{33} \mathrm{H}_{32} \mathrm{NNO}_{2}$ requires C , 65.89 ; H, 5.36 ; N, 2.33%).
(3S,4S)-5-Phenyl-4-[(9-phenyl-9-fluorenyl)-amino]-pen-ten-3-ol (15). A solution of the iodinate $14(1.20 \mathrm{~g}, 1.99$ mmol) in THF (12 mL) was cooled to $-40^{\circ} \mathrm{C}$ and $2.5 \mathrm{M} n$ $\mathrm{BuLi}(1.60 \mathrm{~mL}, 3.99 \mathrm{mmol}, 200 \mathrm{~mol} \%$) was added dropwise over 10 min using a syring pump. The reaction mixture was stirred for an additional 15 min at $-40^{\circ} \mathrm{C}$, then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$. The mixture was extracted with EtOAc ($20 \mathrm{~mL} \times 3$) and combined extracts were concentrated. The resulting residue was chromatographed on silica gel [hexane-EtOAc (8:1)] to give compound $15(0.75 \mathrm{~g}, 90 \%)$ as a solid, $\mathrm{mp} 48-52^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}-4.9^{\circ}$ (c $1.35, \mathrm{CHCl}_{3}$); IR (KBr): $3458,3330,3062,3023,2982$, $2931,1602 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.28(\mathrm{~m}$, $2 \mathrm{H}), 2.39(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{br}, 1 \mathrm{H}), 5.07(\mathrm{~m}, 2 \mathrm{H})$, $5.54(\mathrm{~m}, 1 \mathrm{H})$, and $6.71-7.70(\mathrm{~m}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} 125 \mathrm{MHz}$, CDCl_{3}) $\delta 39.8,59.7,73.1,73.7,116.2,120.9,120.9,126.5$, $127.0,127.0,127.3,128.2,128.7,128.9,129.3,129.3$, $129.4,129.5,130.5,140.1,140.6,141.4,141.6,146.3$, 150.1, and 151.0 (Found; C, 86.30; H, 6.53; N, 3.34. $\mathrm{C}_{30} \mathrm{H}_{2} 7$ NO requires $\mathrm{C}, 86.30 ; \mathrm{H}, 6.52 ; \mathrm{N}, 3.35 \%$).
(3S,4S)-3-O-Benzyl-5-phenyl-4-[(9-phenyl-9-fluorenyl)-aminol-penten-3-ol (16). Allylic alcohol 15 ($1.00 \mathrm{~g}, 2.39$ mmol) was dissolved in THF (15 mL) and treated with 60% $\mathrm{NaH}(0.19 \mathrm{~g}, 4.79 \mathrm{mmol})$ and $\mathrm{Bu} \mathrm{NI}^{(0.27 \mathrm{~g}, 0.72 \mathrm{mmol}) \text { at }}$ $0^{\circ} \mathrm{C}$. After stirring for 10 min at the same temperature, BnBr $(0.57 \mathrm{~mL}, 4.79 \mathrm{mmol})$ was added. The reaction mixture was stirred for 24 h at room temperature, and then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(40 \mathrm{~mL})$. The mixture was
extracted with $\mathrm{EtOAc}(40 \mathrm{~mL} \times 3)$. After concentration of the combined extracts, the residue was purified by silica gel column chromatography [hexane-EtOAc (15:1)] to give the compound $16(1.10 \mathrm{~g}, 91 \%)$ as an oil, $[\alpha]_{\mathrm{D}}^{20}+20.0^{\circ}(c 3.00$, CHCl_{3}); IR (neat) $3328,3063,3022,2926,2866,1602 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.17(\mathrm{dd}, J=13.4,7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.53(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=13.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~m}$, $1 \mathrm{H}), 3.95(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.12(\mathrm{~m}, 1 \mathrm{H}), 5.22(\mathrm{~m}, 1 \mathrm{H}), 5.98$ (ddd, $J=17.2,10.6,6.4$ $\mathrm{Hz}, 1 \mathrm{H})$, and $6.53-7.62(\mathrm{~m}, 23 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 38.0,58.4,70.4,72.7,80.7,117.3,119.5,119.8$, $125.3,125.6,126.2,126.2,126.9,127.2,127.4,127.4$, $127.8,127.9,128.1,128.1,128.2,129.5,136.2,138.9$, $140.1,140.1,140.4,145.8,150.0$, and 150.0 (Found; C, 87.56; $\mathrm{H}, 6.57 ; \mathrm{N}, 2.76 . \mathrm{C}_{37} \mathrm{H}_{33} \mathrm{NO}$ requires $\mathrm{C}, 87.54 ; \mathrm{H}$, 6.55 ; N, 2.76\%).
(2R,3S)-2-O-Benzyl-4-phenyl-3-[(9-phenyl-9-fluorenyl)-amino]-phenylbutanoic acid (17). A solution of the benzylate $\mathbf{1 6}(1.00 \mathrm{~g}, 1.97 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{OH}(20 \mathrm{~mL})$ was reacted with ozone at $-78^{\circ} \mathrm{C}$ until the solution turned blue, then the residual ozone was removed with N_{2} gas. The reaction mixture was allowed to reach room temperature and then was added $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(20 \mathrm{~mL})$ and stirred overnight. After concentration of the combined extracts, the residue was chromatographed on silica gel [hexane-EtOAc (3:1)] to give compound $17(0.97 \mathrm{~g}, 94 \%)$ as a solid; $\mathrm{mp} 80-82^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{20}+74.8^{\circ}\left(c 2.00, \mathrm{CHCl}_{3}\right)$; IR $(\mathrm{KBr}) 3334,3288,3063$, $3020,2928,1742,1602 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $2.20(\mathrm{dd}, J=13.5,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{~d}, J=$ $12.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~d}, J=12.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.61(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H})$, and 6.77-7.64 (m, 23 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 36.0$, $56.1,72.2,73.0,77.3,119.8,120.5,124.5,125.4,125.5$, $127.0,127.5,127.7,127.8,128.3,128.4,128.5,128.7$, $128.8,129.0,129.4,129.6,136.7,137.6,139.7,140.6$, $146.8,147.0$, and 171.9 (Found; C, 82.25; H, 5.94; N, 2.66. $\mathrm{C}_{36} \mathrm{H}_{31} \mathrm{NO}_{3}$ requires $\mathrm{C}, 82.26 ; \mathrm{H}, 5.94 ; \mathrm{N}, 2.66 \%$).
($2 R, 3 S$)-3-Amino-2-hydroxy-4-phenylbutanoic acid hydrochloride ($\mathbf{1} \cdot \mathbf{H C l}$). Protected AHPBA $17(0.30 \mathrm{~g}, 0.57$ mmol) was reacted with H_{2} and $10 \% \mathrm{Pd} / \mathrm{C}(0.03 \mathrm{~g})$ in $\mathrm{CH}_{3} \mathrm{OH}(8 \mathrm{~mL})$ at $70^{\circ} \mathrm{C}$ for 12 h . After filtration of the catalyst with Celite, Dowex $50 \mathrm{~W}-\mathrm{X} 8$ was added to the filtrate. The mixture was filtered, and then washed with MeOH . The remaining residue was eluted with $3 \mathrm{~N} \mathrm{NH}_{4} \mathrm{OH}$ and the ammoniacal solution was evaporated. To the free base 1 was added conc. HCl . The mixture was evaporated, and then co-evaporated with toluene, to give compound $\mathbf{1}$ as its hydrochloride salt. mp $219-220^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}-25.3^{\circ}(c 0.70$, $1 \mathrm{~N} \mathrm{HCl}) ; \mathbb{R}(\mathrm{KBr}) 3434,3048,2939,1608 \mathrm{~cm}^{-1}$; 'H NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 2.97(\mathrm{dd}, J=14.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{dd}$, $J=14.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{ddd}, J=15.0,7.5,3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.26(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H})$, and $7.31-7.41(\mathrm{~m}, 5 \mathrm{H}) ; \delta(125$ MHz ; $\mathrm{D}_{2} \mathrm{O}$) $\delta 35.5,54.9,69.2,128.0,129.5,129.8,135.3$, and 175.0; MS m/z: 134, 120, 104, $91\left(\mathrm{M}^{+}\right)$; (Found; C, $51.84 ; \mathrm{H}, 6.08 ; \mathrm{N}, 6.06 . \mathrm{C}_{10} \mathrm{H}_{1+} \mathrm{ClNO}_{3}$ requires $\mathrm{C}, 51.84 ; \mathrm{H}$, 6.09 ; N, 6.05%).

Methyl N-[(2R,3S)-2-O-benzyl-4-phenyl-3-\{(9-phenyl-

9-fluorenyl)-aminot-butano-yl]-L-leucinate (18). To a solution of compound $17(0.54 \mathrm{~g}, 1.03 \mathrm{mmol})$ in THF (22 mL) were added (S)-Leu- $\mathrm{OCH}_{3}(0.0 .38 \mathrm{~g}, 2.06 \mathrm{mmol}$), HOBT ($0.15 \mathrm{~g}, 1.13 \mathrm{mmol})$, TsOH ($0.19 \mathrm{~g}, 1.03 \mathrm{mmol}$), $\operatorname{DCC}(0.24 \mathrm{~g}, 1.15 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.22 \mathrm{~mL}, 1.54 \mathrm{mmol})$. After stirring the mixture for 2 h at $0^{\circ} \mathrm{C}$, the mixture was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(25 \mathrm{~mL})$ and the mixture was extracted with EtOAc ($25 \mathrm{~mL} \times 3$). After evaporation of the combined extracts, the remaining residue was chromatographed on silica gel [hexane-EtoAc (10:1)] to give compound $18(0.60 \mathrm{~g}, 89 \%)$ as a solid. $\mathrm{mp} 42-44^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{20}-120.6^{\circ}\left(c 2.00, \mathrm{CHCl}_{3}\right) ; \mathbb{R}(\mathrm{KBr}) 3412,3324,3063$, $3019,2957,2929,1743,1667,1602 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.91(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 6 \mathrm{H}), 1.26(\mathrm{~m}, 1 \mathrm{H}), 1.47-$ $1.66(\mathrm{~m}, 3 \mathrm{H}), 2.28(\mathrm{dd}, J=14.3,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{~m}, 1 \mathrm{H})$, $3.32(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}$, $3 \mathrm{H}), 3.93(\mathrm{~m}, 1 \mathrm{H}), 4.62(\mathrm{~m}, 1 \mathrm{H})$, and $6.23-7.65(\mathrm{~m}, 23 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 22.4,23.2,25.3,38.4,42.0$, $50.5,52.6,57.5,72.9,73.0,80.4,119.7,120.1,125.9,126.1$, $126.6,126.7,127.2,128.1,128.1,128.3,128.3,128.4,128.4$, $128.7,128.8,130.3,137.9,140.1,140.5,140.9,146.0$, $150.0,151.3,171.8$, and 173.3 (Found; C, $79.09 ; \mathrm{H}, 6.81$; N, 4.29. $\mathrm{C}_{43} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires $\mathrm{C}, 79.11 ; \mathrm{H}, 6.79 ; \mathrm{N}, 4.29 \%$).
N - $(2 R, 3 S)-2-O$-Benzyl-4-phenyl-3-\{(9-phenyl-9-fluoren-yl)-aminof-butano-yll-L-leucine (19). To a solution of the protected dipeptide $18(0.44 \mathrm{~g}, 0.67 \mathrm{mmol})$ in THF : $\mathrm{H}_{2} \mathrm{O}(8$ $\mathrm{mL}: 4 \mathrm{~mL})$ was added $\mathrm{LiOH}(0.03 \mathrm{~g}, 1.02 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After stirring for 3 h at room temperature, $3 \% \mathrm{HCl}(8 \mathrm{~mL})$ was added and the mixture was extracted with $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}$: $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL}: 30 \mathrm{~mL})$. After concentration of the combined extracts, the residue was chromatographed on silica gel [hexane-EtOAc $(6: 1)$] to give compound $19(0.38 \mathrm{~g}$, 89%) as a solid. mp $228-230^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}-96.4^{\circ}$ (c 3.00 , CHCl_{3}); IR (KBr) 3416, 3326, 3063, 3018, 2959, 1720 , $1662,1603 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.91(\mathrm{~m}$, $6 \mathrm{H}), 1.52-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.70$ (ddd, $J=13.0,7.5,5.4, .3 \mathrm{~Hz}$), 2.28 (dd, $J=12.9,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.62-2.70(\mathrm{~m}, 2 \mathrm{H}), 3.44(\mathrm{~d}, J$ $=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~m}, 2 \mathrm{H}), 4.56(\mathrm{~m}, 1 \mathrm{H})$, and $6.25-7.58(\mathrm{~m}$, $23 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.8,22.8,24.9,37.9$, $41.0,50.4,57.2,72.5,72.7,79.9,119.3,119.8,125.4,125.7$, $126.1,126.2,126.9,127.6,127.8,127.9,127.9,128.0,128.0$, $128.3,128.4,129.8,137.3,139.8,139.8,140.4,145.4$, 149.6, 150.5, 172.1, and 176.8 (Found; C, $79.00 ; \mathrm{H}, 6.62$; N, 4.39. $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires $\mathrm{C}, 78.97 ; \mathrm{H}, 6.63 ; \mathrm{N}, 4.39 \%$).
N-[(2R,3S)-3-Amino-2-hydroxy-4-phenylbutanoyl]-Lleucine (2). The protected leucine $19(0.30 \mathrm{~g}, 0.47 \mathrm{mmol})$ was reacted with H_{2} and $10 \% \mathrm{Pd} / \mathrm{C}(0.07 \mathrm{~g})$ in $\mathrm{CH}_{3} \mathrm{OH}(10$ mL) at $70^{\circ} \mathrm{C}$ for 10 h . The reaction mixture was filtered through Celite, and the remaining solid was subjected to ionexchange chromatography (Dowex 50W-X8, eluting with 3 $\mathrm{N} \mathrm{NH}_{3}$ in water) to give compound $2(0.13 \mathrm{~g}, 89 \%)$ as a solid. mp 231-232 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}-6.6^{\circ}(c 0.85, \mathrm{AcOH})$; IR $(\mathrm{KBr}) 3421,3211,3063,2957,2869,1667,1647,1611 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 0.86(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.90$ $(\mathrm{d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.59-1.75(\mathrm{~m}, 3 \mathrm{H}), 3.00(\mathrm{dd}, J=14.2$, $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{dd}, J=14.2,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~m}, 1 \mathrm{H})$, $4.24(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{dd}, J=9.1,5.5 \mathrm{~Hz}, 1 \mathrm{H})$, and
7.32-7.43 (m, 5 H$)$; ${ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 21.0,22.6$, $24.9,35.5,39.5,51.9,55.5,69.8,128.2,129.7,129.8,135.4$, 173.5 , and 176.8 (Found; C, 62.31; H, 7.84; N, 9.09. C ${ }_{16} \mathrm{H}_{24}$ $\mathrm{N}_{2} \mathrm{O}_{4}$ requires $\mathrm{C}, 62.32 ; \mathrm{H}, 7.84 ; \mathrm{N}, 9.08 \%$).

3,4;5,6-Di- O-isopropylidene-1- O-methanesulfonyl-Dglucitol (20). To a solution of glucitol $5(0.20 \mathrm{~g}, 0.76 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.5 \mathrm{~mL})$ was added diluted $\mathrm{Et}_{3} \mathrm{~N}(0.11 \mathrm{~mL}, 0.76$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.7 \mathrm{~mL})$ and $\mathrm{MsCl}(0.06 \mathrm{~mL}, 0.76 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at $-40^{\circ} \mathrm{C}$. After stirring for 5 min , the mixture was poured into sat. aq NaHCO_{3} solution (8 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL} \times 3$). After concentration of the organic layer, the resulting residue was chromatographed on silica gel [hexane-EtOAc (3:1)] to give primary mesylate $20(0.21 \mathrm{~g}$, 81%) as an oil. $[\alpha]_{\mathrm{D}}^{20}+2.8^{\circ}\left(c 2.00, \mathrm{CHCl}_{3}\right)$; IR (neat) 3425 , $2941,1640 \mathrm{~cm}^{-1}$; ${ }^{\mathrm{I}} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.26(\mathrm{~s}$, $3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.10(\mathrm{~s}, 3 \mathrm{H}), 3.10-4.01(\mathrm{~m}, 3 \mathrm{H}), 4.05-4.09(\mathrm{~m}, 2 \mathrm{H})$, 4.15-4.32 (m, 1H), $4.34(\mathrm{~s}, 1 \mathrm{H})$, and $4.35(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 25.2,26.6,26.8,37.7,68.0,68.2,71.2$, $77.2,79.5,110.0$, and 110.1. (Found; C, 45.86; H, 7.12. $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}_{8} \mathrm{~S}$ requires $\mathrm{C}, 45.87 ; \mathrm{H}, 7.11 \%$).

1,2-Anhydro-3,4;5,6-di- O-isopropylidene-D-glucitol (21). To a solution of monomesylate $20(0.50 \mathrm{~g}, 1.47 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{OH}(8 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(0.50 \mathrm{~g}, 3.67 \mathrm{mmol})$. After stirring for 2 h at room temperature, the reaction mixture was quenched with excess 5% citric acid $(15 \mathrm{~mL})$ and extracted with EtOAc ($25 \mathrm{~mL} \times 2$). After concentration of the combined extracts, the residue was chromatographed on silica gel [hexane-EtOAc $(10: 1)]$ to give epoxide 21 $(0.32 \mathrm{~g}, 92 \%)$ as an oil. $[\alpha]_{\mathrm{D}}^{20}-3.1^{\circ}\left(c 0.93, \mathrm{CHCl}_{3}\right) ; \mathrm{R}$ (neat): $3029,2972,2956 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 1.34-1.41(\mathrm{~m}, 12 \mathrm{H}), 2.79-2.80(\mathrm{~m}, 2 \mathrm{H}), 3.09(\mathrm{dd}, J=3.4$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{dd}, J=7.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~m}, 1 \mathrm{H})$, $3.98(\mathrm{dd}, J=8.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{ddd}, J=8.3,6.1,4.4 \mathrm{~Hz}$, $1 \mathrm{H})$, and $4.14(\mathrm{dd}, J=8.6,6.1 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 25.6,27.0,27.2,27.4,45.1,52.4,68.2,77.5$, 78.9, 80.7, 110.1, and 110.6. (Found; C, 59.00; H, 8.26. $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{5}$ requires $\mathrm{C}, 59.00 ; \mathrm{H}, 8.25 \%$).
(3S,4R)-5-Phenyl-4-[(9-phenyl-9-fluorenyl)-amino]-pen-ten-3-ol (22). (3S,4R) allylic alcohol 22 was obtained by the same procedure as the conversion of $\mathbf{8}$ to $\mathbf{1 5}$; the overall yield for this conversion was 79%. This compound was obtained as a solid. mp $51-52{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{20}-8.2^{\circ}$ (c 2.00 , CHCl_{3}); IR (KBr): $3517,3297,3068,3022,2997,2957$, $1604 \mathrm{~cm}^{-1}$; 'H NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.37-2.43(\mathrm{~m}$, $3 \mathrm{H}), 2.57(\mathrm{~m}, 1 \mathrm{H}), 3.13(\mathrm{br}, 1 \mathrm{H}), 3.33(\mathrm{~m}, 1 \mathrm{H}), 5.04(\mathrm{~m}, 2 \mathrm{H})$, $5.63(\mathrm{~m}, 1 \mathrm{H})$, and $6.24-7.67(\mathrm{~m}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 36.0,59.1,71.6,72.3,115.4,119.5,120.0,125.0$, $125.2,125.7,126.3,127.2,128.0,128.1,128.1,128.4$, $128.5,128.6,129.5,137.1,138.9,139.7,140.8,145.0$, 149.0 , and 149.5 (Found; C, 86.30; H, 6.53; N, 3.34. $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{NO}$ requires $\left.\mathrm{C}, 86.30 ; \mathrm{H}, 6.52 ; \mathrm{N}, 3.35 \%\right)$.
(2R,3R)-3-Amino-2-hydroxy-4-phenylbutanoic acid hydrochloride $(\mathbf{3} \cdot \mathbf{H C l})$. This compound was prepared according to the $\mathbf{1} \cdot \mathbf{H C l}$ compound method and obtained as a
solid; mp 225-228 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{20}+4.8^{\circ}(c 0.70,1 \mathrm{~N} \mathrm{HCl})$; IR (KBr) 3400, 3032, 2909, 2851, $1606 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 2.90(\mathrm{dd}, J=15.0,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J=$ $14.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~m}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H})$, and 7.28-7.37 (m, 5H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 33.2$, $55.1,70.0,128.0,129.3,129.8,135.2$, and 174.3; MS m/z: 134, 120, 104, $91\left(\mathrm{M}^{+}\right)$; (Found; C, 51.82; H, 6.09 ; N, 6.07. $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{CNO}_{3}$ requires $\left.\mathrm{C}, 51.84 ; \mathrm{H}, 6.09 ; \mathrm{N}, 6.05 \%\right)$.
Methyl N-[(2R,3R)-2-O-benzyl-4-phenyl-3-\{ 9 -phenyl-9-fluorenyl)-aminot-butano-ylJ-L-leucinate (23). This compound 23 was prepared according to the same method to obtain 18 to provide a solid; the yield for this conversion was $90 \% ; \mathrm{mp} 41-43^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}+47.3^{\circ}\left(c 3.00, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}(\mathrm{KBr})$ $3412,3335,3063,3017,2957,1743,1674,1602 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ $\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.94(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}$, $J=4.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.51-1.69(\mathrm{~m}, 3 \mathrm{H}), 2.50(\mathrm{br}, 1 \mathrm{H}), 2.55(\mathrm{dd}, J$ $=12.5,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~m}, 2 \mathrm{H}), 3.43(\mathrm{dd}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.73(\mathrm{~s}, 3 \mathrm{H}), 4.10(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=11.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.58(\mathrm{~m}, 1 \mathrm{H})$, and $6.70-7.79(\mathrm{~m}, 23 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(125}$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 22.3,23.2,25.3,38.7,41.7,50.6,52.6,58.1$, $72.6,73.1,81.4,120.2,120.4,126.1,126.2,126.4,126.7$, $127.4,128.0,128.1,128.3,128.4,128.5,128.7,128.9$, $130.3,137.9,140.2,140.6,141.0,146.0,149.8,150.8$, 171.5 , and 173.4 (Found; C, $79.09 ; \mathrm{H}, 6.81 ; \mathrm{N}, 4.29 . \mathrm{C}_{43} \mathrm{H}_{44}$ $\mathrm{N}_{2} \mathrm{O}_{4}$ requires $\left.\mathrm{C}, 79.11 ; \mathrm{H}, 6.79 ; \mathrm{N}, 4.29 \%\right)$.
N-[(2R,3R)-3-amino-2-hydroxy-4-phenylbutanoyl]-Lleucine (4). This compound 4 was prepared according to the same method to obtain 2 and provided a solid; the yield for this conversion was 85%; mp $220-221^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}+30.3^{\circ}(c$ $0.85, \mathrm{AcOH}) ; \mathbb{R}(\mathrm{KBr}) 3497,3380,3277,2957,2870,1656$, $1627 \mathrm{~cm}^{-1}$; 'H NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 0.95(\mathrm{~m}, 6 \mathrm{H}), 1.61-$ $1.75(\mathrm{~m}, 3 \mathrm{H}), 2.89(\mathrm{dd}, J=14.1,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{dd}, J=$ $14.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~m}, 1 \mathrm{H}), 4.29(\mathrm{~m}, 2 \mathrm{H})$, and $7.22-7.31$ $(\mathrm{m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 21.0,22.8,25.4,34.4$, $41.4,53.9,57.1,70.6,127.3,128.9,129.6,136.4,171.4$, and 178.7 (Found; C, 62.30; H, 7.84; N, 9.07. $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires $\mathrm{C}, 62.32 ; \mathrm{H}, 7.84 ; \mathrm{N}, 9.08 \%$).

Acknowledgements. This research was supported by the Korea Science and Engineering Foundation (KOSEF) through the Regional Animal Industry Research Center at Jinju National University, Jinju, Korea.

Supporting Information Available: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compounds 1-4 and ELMS of compounds 1 and 3. This material is available via the Internet at http:// www kesnet.or:kr.

References

1. (a) Cole, D. C. Tetrahedron 1994, 50, 9517. (b) Juaristi, E.; Quintana, D.; Escalante, J. Aldrichim, Acta 1994, 27, 3
2. (a) Umezawa, H.; Aoyagi, T.; Suda. H.; Hamada, M.; Takeuchi, T. J. Antibiof. 1976, 29, 97. (b) Pearson, W. H.; Hines, J. V. J. Org. Chem. 1989, 54, 4235. (c) Suda, H.; Takita, T.; Aoyagi, T.; Umezawa, H. J. Antibiot, 1976, 29, 600. (d) Ha, H.-J.; Park, G.S.;

Ahn, Y.-Gi; Lee, G S. Bioorg. Med. Chem, Lett, 1988, 8, 1619. (e) Nicolaou, K. C.; Dai, W.-M.; Guy, R. K. Angew. Chem. Intl. Ed. Eng. 1994, 33, 15. (f) Umemura. E.; Tsuchiya. T.; Umezawa, S. J. Antibiot. 1988, 41, 530. (g) Okino, T.; Matsuda, H.; Murakami. M.; Yamaguchi, K. Tetrahedron Lett, 1993, 34, 501. (h) Lee, K. H.; Chung, Y. J., Kim, Y. C.; Song, S. J. Bull. Korean Chem, Soc. 2005, 26, 1079.
3. (a) Lee, B. W.; Lee, J. H.; Jang, K. C.; Kang, J. E.; Kim, J. H.; Park, K. M.; Park, K. H. Tetrahedron Lett. 2003, 44, 5905. (b) Seo, W. D.; Long, M. J. C.; Kim, J. H.; Park, J. K.; Park, K. M.; Park, K. H. Synlet 2005, 2289. (c) Herranz, R.; Castro-Pichel, J.; Vinuesa, S., Garcia Lopez, M. T. J. Org. Chem. 1990, 55, 2232. (d) Matsumoto, T.; Kobayashi, Y.; Takemoto, Y.; Ito, Y., Kamijo, T.; Harada, H.; Terashima, S. Tetrohedron Lett. 1990, 31, 4175. (e) Upadhya T. T.; Sudalai, A. Tetrahedron: Asymmetry 1997, 8 . 3685. (9) Rubin, A. E.; Sharpless, K. B. Angew. Chem., Int. Ed, Engl. 1997, 36, 2637. (g) Denis, J. N.; Greene, A. E.; Serra, A. A.; Luche, M. J. J. Org. Chem, 1986, 51, 46. (h) Escalante, J.: Juaristi, E. Tetrahedron Lett. 1995, 36, 4397. (i) Kobayashi, S.; Osobe, T.; Ohno, M. Tetrahedron Lett. 1984, 25, 5079.
4. Nishino, N.; Powers, J. C. Biochemistry 1979, I8, 4340.
5. (a) Nagai, M.; Kojima, F.; Naganawa, H.; Hamada, M.; Aoyagi, T.; Takeuchi, T. J. Antibiot. 1997, 50, 82. (b) Aoyagi, T.; Yoshida, S., Nakamura, Y., Shigihara, Y.; Hamada, M., Takeuchi, T. J. Antibiot. 1990, 43, 143.
6. (a) Kimura, T.; Shuto, D.; Kasai, S.; Liu, P.; Hidaka, K.; Hamada, T.; Hayashi, Y.; Hattori, C.; Asai, M.; Kitazume, S.; Saido, T. C.; Ishiura, S.; Kiso, Y. Bioorg. Med. Chem. Lett. 2004, 14, 1527. (b) Kimura, T.; Shuto, D., Hamada, Y.; Igawa, N.; Kasai, S.; Liu, P.; Hidaka, K.; Hamada, T.; Hayashi, Y.; Hiso, Y. Bioorg. Med, Chem, Lett. 2005, 15, 211 . (c) Kimura, T.; Hamada, Y.; Stochaj, M.; Ikari, H.; Nagamine, A.; Abdel-Rahman, H.; Igawa, N.; Hidaka, K.; Nguyen, J.-T.; Saito, K.; Hayashi, Y.; Kiso, Y. Bioorg. Med. Chem. Lett. 2006, 16, 2380.
7. (a) Brynda, J.; Rezacova, P., Fabry, M.; Horejsi, M.; Stouracova, R.; Sedlacek, J.; Soucek, M.; Hradilek, M.; Lepsik, M.; Konvalinka, J. J. Med. Chem. 2004, 47, 2030. (b) Shuto, D.; Kasai, S.; Kimura, T.; Liu, P.; Hidaka, K.; Hamada, T.; Shibakawa, S.; Hayashi, Y.; Hattori, C.; Szabo, B.; Ishiura, S.; Kiso, Y. Bioorg. Med. Chem. Lett. 2003, 13, 4273.
8. (a) Nishizawa, R.; Saino, T.; Takita, T.; Suda, H.;; Aoyagi, T.; Umezawa, H. J. Med. Chem. 1977, 20, 510 . (b) Hertanz, R.; Castro-Pichel, J., Garcia Lopez, T. Synthesis 1989, 703. (c) Rich, D. H.; Moon, B. J.; Boparai, A. S. J. Org. Chem. 1980, 45, 2288. (d) Rich. D. H.; Sun, E. T.; Boparai, A. S. J. Org. Chem. 1978, 43 , 3624. (e) Rafiee, E.; Tangestaninejad, S.; Habibi, M. H.; Mirkhani, V. Bull. Korean Chem. Soc. 2005, 26, 1585.
9. Sharpless, K. B.; Behrens, C. H.; Katsuki, T.; Lee, A. W. M.; Martin, V. S.; Takatani, M.; Viti, S. M.; Walker, F. J.; Woodard, S. S. Ptre Appl. Chem. 1983, 55, 589.
10. Kato, K.; Sino, T.; Nishizawa, R.; Takita, T.; Umezawa, H. J. Chem. Soc. Perkin Trans. / 1980, 1618.
11. Lee, J. H.; Lee, B. W.; Jang, K. C., Jeong, I.-Y.; Yang, M. S.; Lee, S. K.; Park, K. H. Synthesis 2003, 829.
12. (a) Kim, J. H.; Long, M. J. C.: Seo, W. D.; Ryu, Y. B.; Yang, M. S.; Park, K. H. J. Org. Chem. 2005, 70, 4082. (b) Lubell, W. D.; Rapoport, H. J. Am. Chem. Soc. 1987, 109, 236. (c) Gerspacher, M.; Rapoport, H. J. Org. Chem. 1991, 56, 3700.
13. (a) Park, K. H.; Yoon, Y. J.; Lee, S. G Tetrahedron Lett. 1994, 35, 9737. (b) Lee, J. H.; Kang, J. E.; Yang, M. S.; Kang, K. Y.; Park, K. H. Tetrahedron 2001, 57, 10071. (c) Jeong, I.-Y.; Lee, J. H.; Lee, B. W.; Kim, J. H.; Park, K. H. Bull. Korean Chem. Soc. 2003, 24.617.
14. Kang, J. E.; Kim, J. H.; Lee, W. S.; Yang, M. S.; Park, K. H. Bull. Korean Chem. Soc. 1998, 19, 1369.

