• Title/Summary/Keyword: Acid Colloidal Silica

Search Result 20, Processing Time 0.022 seconds

A Study on Semi Abrasive Free Slurry including Acid Colloidal Silica for Copper Chemical Mechanical Planarization (구리 CMP 적용을 위한 산성 콜로이드 실리카를 포함한 준무연마제 슬러리 연구)

  • 김남훈;김상용;서용진;김태형;장의구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.3
    • /
    • pp.272-277
    • /
    • 2004
  • The primary aim of this study is to investigate new semi-abrasive free slurry including acid colloidal silica and hydrogen peroxide for copper chemical-mechanical planarization (CMP). In general, slurry for copper CMP consists of colloidal silica as an abrasive, organic acid as a complex-forming agent, hydrogen peroxide as an oxidizing agent, a film forming agent, a pH control agent and several additives. We developed new semi-abrasive free slurry (SAFS) including below 0.5% acid colloidal silica. We evaluated additives as stabilizers for hydrogen peroxide as well as accelerators in tantalum nitride CMP process. We also estimated dispersion stability and Zeta potential of the acid colloidal silica with additives. The extent of enhancement in tantalum nitride CMP was verified through anelectrochemical test. This approach may be useful for the application of single and first step copper CMP slurry with one package system.

Study on Cu CMP by using Semi-Abrasive Free Slurry (준 무연마제 슬러리를 아용한 Cu CMP 연구)

  • Kim, Nam-Hoon;Lim, Jong-Heun;Eom, Jun-Chul;Kim, Sang-Yong;Kim, Chang-Il;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.158-161
    • /
    • 2003
  • The primary aim of this study is to investigate new semi-abrasive free slurry including acid colloidal silica and hydrogen peroxide for copper chemical-mechanical planarization (CMP). In general, slurry for copper CMP consists of colloidal silica as an abrasive, organic acid as a complex-forming agent, hydrogen peroxide as an oxidizing agent, a film forming agent, a pH control agent and several additives. We developed new semi-abrasive free slurry (SAFS) including below 0.5% acid colloidal silica. We evaluated additives as stabilizers for hydrogen peroxide as well as accelerators in tantalum nitride CMP process. We also estimated dispersion stability and Zeta potential of the acid colloidal silica with additives. The extent of enhancement in tantalum nitride CMP was verified through anelectrochemical test. This approach may be useful for the application of single and first step copper CMP slurry with one package system.

  • PDF

Preparation of Silylated Waterborne Polyurethane/Silica Nanocomposites Using Colloidal Silica (Colloidal Silica를 이용한 Silylated Waterborne Polyurethane/Silica Nanocomposite의 제조)

  • Hong, Min Gi;Shin, Yong Tak;Choi, Jin Joo;Lee, Won Ki;Lee, Gyoung Bae;Yoo, Byung Won;Lee, Myung Goo;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.48 no.5
    • /
    • pp.561-567
    • /
    • 2010
  • Silylated waterborne polyurethane was synthesized by capping the NCO groups of polyurethane prepolymer, prepared from isophrone diisocyanate, poly(tetramethylene glycol) and dimethylol propionic acid, with aminopropyl triethoxysilane. Subsequently, it was mixed with colloidal silica to prepare silylated waterborne polyurethane/silica nanocomposites. The average sizes of nanocomposite particles, measured by dynamic light scattering, showed almost the same value, irrespective of increasing silica content. However, the prepared nanocomposites showed better thermal stability than pure waterborne polyurethane.

Preparation and Interface Properties of Colloidal Silica (콜로이드 실리카의 제조 및 계면특성)

  • Lee, Han Chul;Kim, Jong Hyub;Chang, Yoon Ho
    • Applied Chemistry for Engineering
    • /
    • v.17 no.4
    • /
    • pp.386-390
    • /
    • 2006
  • Colloidal silica which has high surface area and excellent surface properties are chemically stable inorganic materials and used for various applications in industry. Silica sol was prepared from sodium silicate solution by acid neutralization method and ion exchange treatment to remove sodium ions. Through the experimental analysis for controlling factors of particle growth rate, such as temperature, pH, and aging time, the uniform size distribution of silica sol could be obtained. The size distribution and shape of silica sol was measured by TEM and dynamic light scattering method. Zeta potential change and gelling phenomena of silica sol and its rheological properties also investigated.

Evaluation of Al CMP Slurry based on Abrasives for Next Generation Metal Line Fabrication (연마제 특성에 따른 차세대 금속배선용 Al CMP (chemical mechanical planarization) 슬러리 평가)

  • Cha, Nam-Goo;Kang, Young-Jae;Kim, In-Kwon;Kim, Kyu-Chae;Park, Jin-Goo
    • Korean Journal of Materials Research
    • /
    • v.16 no.12
    • /
    • pp.731-738
    • /
    • 2006
  • It is seriously considered using Al CMP (chemical mechanical planarization) process for the next generation 45 nm Al wiring process. Al CMP is known that it has a possibility of reducing process time and steps comparing with conventional RIE (reactive ion etching) method. Also, it is more cost effective than Cu CMP and better electrical conductivity than W via process. In this study, we investigated 4 different kinds of slurries based on abrasives for reducing scratches which contributed to make defects in Al CMP. The abrasives used in this experiment were alumina, fumed silica, alkaline colloidal silica, and acidic colloidal silica. Al CMP process was conducted as functions of abrasive contents, $H_3PO_4$ contents and pressures to find out the optimized parameters and conditions. Al removal rates were slowed over 2 wt% of slurry contents in all types of slurries. The removal rates of alumina and fumed silica slurries were increased by phosphoric acid but acidic colloidal slurry was slightly increased at 2 vol% and soon decreased. The excessive addition of phosphoric acid affected the particle size distributions and increased scratches. Polishing pressure increased not only the removal rate but also the surface scratches. Acidic colloidal silica slurry showed the highest removal rate and the lowest roughness values among the 4 different slurry types.

Synthesis of Sol using acid Colloidal Silica and TMOS/MTMS (산성 Colloidal Silica와 TMOS/MTMS를 이용한 졸합성)

  • Kang, Dong-Pil;Park, Hoy-Yul;Ahn, Myeong-Sang;Myung, In-Hye;Lee, Tae-Hui;Lee, Tae-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05b
    • /
    • pp.154-157
    • /
    • 2004
  • 산성 colloidal silica(CS) 1034A, HSA와 TMOS, MTMS 실란 간의 졸겔반응조건이 코팅도막의 특성에 미치는 영향을 조사하기 위하여 1034A CS계에 대해서는 1단계로 실란들을 첨가하고 동일한 MTMS에 대해 CS/TMOS의 함량비, 반응시간을 달리하여 졸을 합성하였다. HSA계에 대해서는 2단계로 분리하여 TMOS, MTMS 실란을 첨가하는데 실란 첨가순서와 실란 함량비, 반응시간을 달리하여 졸을 합성하였다. 합성된 졸은 slide glass에 함침 코팅한 후 $300^{\circ}C$에서 경화시킨 도막의 특성들을 조사하였다. 1034A CS계는 CS/TMOS의 비가 70/30일 때 50/50인 경우보다 반응시간에 따라서 표면조도가 우수하여 접촉각에 영향을 덜 주므로 효과적인 균일 반응상으로 진행되었다. HSA CS계는 1단계로 MTMS를 먼저 첨가하고 MTMS/TMOS 비를 25/75로 첨가하면 반응시간에 따라서 표면조도 거칠기에 크게 영향 받지 않고 접촉각을 안정화시킬 수 있다.

  • PDF

Development of Silica Based Microgels and Evaluation of Their Performance in Microparticle Retention System

  • Kim, Tae-Young;Lee, Hak-Lae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.32 no.1
    • /
    • pp.33-40
    • /
    • 2000
  • The effectiveness of silica-based microgels prepared through the reaction of sulfuric acid and sodium silicate as a component of Compozil system has been evaluated . Silica based microgels with better performance in retention and drainage than a commercial colloidal silica sol have been successfully prepared. Silica gels with the highest charge density were obtained when product pH was controlled to 9. And highly charged silica-based microgels showed greater retention and freeness performance than a commerical product. In particular the difference in retention, turbidity , and freeness between these microgels and a commercial product was eminent at low addition rate. The effects of reaction conditions including reaction temperature, process water quality and feeing rate on product efficiency in improving retention and drainage were also investigated and discussed.

  • PDF

A Study on CMP Characteristics According to Shape of Colloidal Silica Particles (콜로이달 실리카 입자 형상에 따른 CMP 특성에 관한 연구)

  • Kim, Moonsung;Jeong, Haedo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.9
    • /
    • pp.1037-1041
    • /
    • 2014
  • Slurry used for polishing semiconductors processed by exchange, pressurization, and multi-step feeding has been studied to investigate the effect of the size and shape of slurry particles on the oxide CMP removal rate. First, spherical silica sol was prepared by the ion exchange method. The spherical silica particle was used as a seed to grow non-spherical silica sol in accordance with the multi-step feeding of silicic acid by the ion exchange and pressurization methods. The oxide removal rate of both non-spherical silica sol and commercially available slurry were compared with increasing average particle size in the oxide CMP. The more alkaline the pH level of the non-spherical silica sol, the higher was the removal rate and non-uniformity.

Mechanical Analysis on Uniformity in Copper Chemical Mechanical Planarization (Cu CMP에서의 연마 균일성에 관한 기계적 해석)

  • Lee, Hyun-Seop;Park, Boum-Young;Jeong, Hae-Do;Kim, Hyoung-Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.1
    • /
    • pp.74-79
    • /
    • 2007
  • Most studies on copper Chemical Mechanical Planarization (CMP) have focused on material removal and its mechanisms. Although many studies have been conducted on the mechanism of Cu CMP, a study on uniformity in Cu CMP is still unknown. Since the aim of CMP is global and local planarization, the approach to various factors related to uniformity in Cu CMP is essential to elucidate the Cu CMP mechanism as well. The main purpose of the experiment reported here was to investigate and mechanically analyze the roles of slurry components in the formation of the uniformity in Cu CMP. In this paper, Cu CMP was performed using citric acid($C_{6}H_{8}O_{7}$), hydrogen peroxide($H_{2}O_{2}$), colloidal silica, and benzotriazole($BTA,\;C_{6}H_{4}N_{3}H$) as a complexing agent, an oxidizer, an abrasive, and a corrosion inhibitor, respectively. All the results of this study showed that within-wafer non-uniformity(WIWNU) of Cu CMP could be controlled by the contents of slurry components.

Influence of Crosslinked Cationic Starches and Silica Microgels on the Performance of Microparticle Retention System

  • Kim, Tae-Young;Lee, Hak-Lae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.5
    • /
    • pp.1-9
    • /
    • 2003
  • Effectiveness of the microparticle retention systems in improving drainage, retention, formation has been recognized for many years. In this study the effectiveness of crosslinked cationic corn starches and silica-based microgels as components of Compozil system has been evaluated. It was shown that improvements in retention and strength could be achieved by employing crosslinked cationic corn starches especially at high conductivity. Silica-based microgels with better performance in retention and drainage than a commercial colloidal silica sol have been made through a reaction of sulfuric acid and sodium silicate solutions.