• Title/Summary/Keyword: Accuracy comparison

Search Result 3,213, Processing Time 0.03 seconds

Accuracy Analysis of 2-D Direction Finding Based on Phase Comparison (위상비교 방식을 이용한 2차원 방향탐지 정확도 분석)

  • Chae, Myoung-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.8
    • /
    • pp.653-660
    • /
    • 2017
  • In this paper, the author analyzes direction finding accuracy based on phase comparisons to estimate elevation and azimuth angles of arrival signals. This paper considers the uniform array configurations using four and three elements. In that direction finding structures, I present the analytic expressions for estimated elevation and azimuth angles and then analyze the direction finding errors. And one presents the design guideline of direction finding system in comparison with aspects of accuracy, structure, the number of channels in that structures. The analysis result is similar with simulation one and has difference within $1.2^{\circ}RMS$. From the proposed analysis results, one knows that when SNR is 20 dB and the baseline is half of wavelength, the estimated elevation accuracy of the uniform array using four elements is 1.15 times better than the one of the uniform array using three elements and the estimated azimuth accuracy is same each other. In addition, one knows coning error is eliminated in 2-D direction finding structure.

Evaluation of the FSA Hand Force Measurement System (손 힘 사용 측정 FSA 시스템의 성능 평가)

  • Jung, Ki-Hyo;You, Hee-Cheon;Kwon, O-Chae
    • Journal of the Ergonomics Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.45-49
    • /
    • 2005
  • The FSA(Force Sensitive Application) system measures hand force by using force resistance sensors. Compared to conventional hand force measurement systems such as Lafayette hand dynamometer and Jamar hydraulic hand dynamometer, the FSA system can be applied to analyze use of hand forces while the hand is manipulating objects for a task, However, the measurement performance of the FSA system has not been objectively evaluated. The present study tested the FSA system in terms of stability, repeatability, accuracy, and linearity. It is shown that the FSA system has good stability (CV$\leq$0.02) and linearity($R^2$=0.82), but has low repeatability(CV=$0.11{\sim}0.19$) and accuracy(22% of underevaluation on average). This performance result indicates that measurements from the FSA system should be used for relative comparison rather than for absolute comparison.

High Speed Impact and Penetration Analysis using Explicit Finite Element Method (외연 유한요소 기법을 사용한 고속충돌 및 관통해석)

  • Paik, Seung-Hoon;Kim, Seung-Jo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.4 s.23
    • /
    • pp.5-13
    • /
    • 2005
  • The impact of a long-rod penetrator into oblique plates with combined obliquity and yaw is investigated. The study was done using a newly developed three dimensional dynamic and impact analysis code, which uses the explicit finite element method. Through the comparison of simulation result with experimental result and other code's result, the adaptability and accuracy of the developed code is evaluated under the complex situation in which yaw angle and oblique angle exist simultaneously. As a result of comparison, it has found that deformed shape, residual length and velocity, rotational velocity of long-rod show good agreement with experimental data. Through this study, the applicability and accuracy of the code as a metallic armour system design tool is verified.

A Comparison of Seasonal Linear Models and Seasonal ARIMA Models for Forecasting Intra-Day Call Arrivals

  • Kim, Myung-Suk
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.2
    • /
    • pp.237-244
    • /
    • 2011
  • In call forecasting literature, both the seasonal autoregressive integrated moving average(ARIMA) type models and seasonal linear models have been popularly suggested as competing models. However, their parallel comparison for the forecasting accuracy was not strictly investigated before. This study evaluates the accuracy of both the seasonal linear models and the seasonal ARIMA-type models when predicting intra-day call arrival rates using both real and simulated data. The seasonal linear models outperform the seasonal ARIMA-type models in both one-day-ahead and one-week-ahead call forecasting in our empirical study.

Modeling of transient temperature distribution in multilayer asphalt pavement

  • Teltayev, Bagdat B.;Aitbayev, Koblanbek
    • Geomechanics and Engineering
    • /
    • v.8 no.2
    • /
    • pp.133-152
    • /
    • 2015
  • Mathematical model has been developed for determination of temperature field in multilayer pavement and subgrade, which considers transfer of heat by conduction and convection, receiving of heat from total solar radiation and atmosphere emission, output of heat due to the emission from the surface of pavement. The developed model has been realized by the finite element method for two dimensional problem using two dimensional second order finite element. Calculations for temperature field have been made with the programme realized on the standard mathematical package MATLAB. Accuracy of the developed model has been evaluated by comparison of temperatures, obtained theoretically and experimentally. The results of comparison showed high accuracy of the model. Long-term calculation (within three months) has been made in pavement points in accordance with the data of meteorological station for air temperature. Some regularities have been determined for variation of temperature field.

Comparison of Performance According to Preprocessing Methods in Estimating %IMF of Hanwoo Using CNN in Ultrasound Images

  • Kim, Sang Hyun
    • International journal of advanced smart convergence
    • /
    • v.11 no.2
    • /
    • pp.185-193
    • /
    • 2022
  • There have been various studies in Korea to develop a %IMF(Intramuscular Fat Percentage) estimation method suitable for Hanwoo. Recently, a %IMF estimation method using a convolutional neural network (CNN), a kind of deep learning method among artificial intelligence methods, has been studied. In this study, we performed a performance comparison when various preprocessing methods were applied to the %IMF estimation of ultrasound images using CNN as mentioned above. The preprocessing methods used in this study are normalization, histogram equalization, edge enhancement, and a method combining normalization and edge enhancement. When estimating the %IMF of Hanwoo by the conventional method that did not apply preprocessing in the experiment, the accuracy was 98.2%. The other hand, we found that the accuracy improved to 99.5% when using preprocessing with histogram equalization alone or combined regularization and edge enhancement.

A revised Hermite peak factor model for non-Gaussian wind pressures on high-rise buildings and comparison of methods

  • Dongmei Huang;Hongling Xie;Qiusheng Li
    • Wind and Structures
    • /
    • v.36 no.1
    • /
    • pp.15-29
    • /
    • 2023
  • To better estimate the non-Gaussian extreme wind pressures for high-rise buildings, a data-driven revised Hermitetype peak factor estimation model is proposed in this papar. Subsequently, a comparative study on three types of methods, such as Hermite-type models, short-time estimate Gumbel method (STE), and new translated-peak-process method (TPP) is carried out. The investigations show that the proposed Hermite-type peak factor has better accuracy and applicability than the other Hermite-type models, and its absolute accuracy is slightly inferior to the STE and new TPP methods for non-Gaussian wind pressures by comparing with the observed values. Moreover, these methods generally overestimate the Gaussian wind pressures especially the STE.

Discrimination between spontaneous and posed smile: Humans versus computers (자발적 웃음과 인위적 웃음 간의 구분: 사람 대 컴퓨터)

  • Eom, Jin-Sup;Oh, Hyeong-Seock;Park, Mi-Sook;Sohn, Jin-Hun
    • Science of Emotion and Sensibility
    • /
    • v.16 no.1
    • /
    • pp.95-106
    • /
    • 2013
  • The study compares accuracies between humans and computer algorithms in the discrimination of spontaneous smiles from posed smiles. For this purpose, subjects performed two tasks, one was judgment with single pictures and the other was judgment with pair comparison. At the task of judgment with single pictures, in which pictures of smiling facial expression were presented one by one, subjects were required to judge whether smiles in the pictures were spontaneous or posed. In the task for judgment with pair comparison, in which two kinds of smiles from one person were presented simultaneously, subjects were to select spontaneous smile. To calculate the discrimination algorithm accuracy, 8 kinds of facial features were used. To calculate the discriminant function, stepwise linear discriminant analysis (SLDA) was performed by using approximately 50 % of pictures, and the rest of pictures were classified by using the calculated discriminant function. In the task of single pictures, the accuracy rate of SLDA was higher than that of humans. In the analysis of accuracy on pair comparison, the accuracy rate of SLDA was also higher than that of humans. Among the 20 subjects, none of them showed the above accuracy rate of SLDA. The facial feature contributed to SLDA effectively was angle of inner eye corner, which was the degree of the openness of the eyes. According to Ekman's FACS system, this feature corresponds to AU 6. The reason why the humans had low accuracy while classifying two kinds of smiles, it appears that they didn't use the information coming from the eyes enough.

  • PDF

Comparison of various k-ε models and DSM applied to flow around a high-rise building - report on AIJ cooperative project for CFD prediction of wind environment -

  • Mochida, A.;Tominaga, Y.;Murakami, S.;Yoshie, R.;Ishihara, T.;Ooka, R.
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.227-244
    • /
    • 2002
  • Recently, the prediction of wind environment around a building using Computational Fluid Dynamics (CFD) technique comes to be carried out at the practical design stage. However, there have been very few studies which examined the accuracy of CFD prediction of flow around a high-rise building including the velocity distribution at pedestrian level. The working group for CFD prediction of wind environment around building, which consists of researchers from several universities and private companies, was organized in the Architectural Institute of Japan (AIJ) considering such a background. At the first stage of the project, the working group planned to carry out the cross comparison of CFD results of flow around a high rise building by various numerical methods, in order to clarify the major factors which affect prediction accuracy. This paper presents the results of this comparison.

Accuracy Improvement of the Estimated Angle Using Phase Averaging in Phase-Comparison Monopulse Algorithm (위상 비교 모노 펄스 알고리즘에서 위상평균법을 이용한 추정 각도 정확도 향상)

  • Cho, Byung-Lae;Lee, Jung-Soo;Lee, Jong-Min;Sun, Sun-Gu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.10
    • /
    • pp.1212-1215
    • /
    • 2012
  • This study describes the accuracy improvement of the estimated angle using phase averaging in phase-comparison monopulse algorithm. In addition, to compensate the time-delay due to the phase averaging, we propose the time-delay compensation algorithm which uses the derivative of the estimated angle. These derivative is calculated by the curve fitting method. Using the real radar interferometer, we have verified that the phase averaging and time-delay compensation algorithms are effective in real-time signal processing application.