• Title/Summary/Keyword: Accuracy Statistics

Search Result 824, Processing Time 0.023 seconds

Statistics Quality Assessment and Improvement of Monitoring on Soil Quality (토양오염도 현황 통계의 품질 진단과 개선 방안)

  • Kim, Kee-Dae
    • Journal of Environmental Science International
    • /
    • v.18 no.10
    • /
    • pp.1079-1088
    • /
    • 2009
  • The statistics of monitoring on soil quality is a report statistics which is made on the basis of Article 15, Environment Strategy Basic Law and Article 5, Soil Environment Conservation Law. This study was conducted according to quality assessment of Korea National Statistical Office. The assessment of quality infrastructure advised that the authority bring up and increase completely responsible officer and secure the budget. The assessment of user satisfaction and reflection of request propose that the statistics is focused on soil background concentration, decrease soil sampling points and extend survey period. The assessment of error management system per processes of detailed preparation suggest change of the statistics objective, a reduction of sampling points and improvement of survey period and soil measurement properties. Accuracy assessment of data proposed cuts of sampling points, accessibility increment and build up of management system linking subordinates and Ministry of Environment. The substantiality assessment of data service demonstrated information environment improvement for users including reference expression and records of statistics table and figure contents.

Classification accuracy measures with minimum error rate for normal mixture (정규혼합분포에서 최소오류의 분류정확도 측도)

  • Hong, C.S.;Lin, Meihua;Hong, S.W.;Kim, G.C.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.4
    • /
    • pp.619-630
    • /
    • 2011
  • In order to estimate an appropriate threshold and evaluate its performance for the data mixed with two different distributions, nine kinds of well-known classification accuracy measures such as MVD, Youden's index, the closest-to- (0,1) criterion, the amended closest-to- (0,1) criterion, SSS, symmetry point, accuracy area, TA, TR are clustered into five categories on the basis of their characters. In credit evaluation study, it is assumed that the score random variable follows normal mixture distributions of the default and non-default states. For various normal mixtures, optimal cut-off points for classification measures belong to each category are obtained and type I and II error rates corresponding to these cut-off points are calculated. Then we explore the cases when these error rates are minimized. If normal mixtures might be estimated for these kinds of real data, we could make use of results of this study to select the best classification accuracy measure which has the minimum error rate.

Accuracy of Multiple Outlier Tests in Nonlinear Regression

  • Kahng, Myung-Wook
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.1
    • /
    • pp.131-136
    • /
    • 2011
  • The original Bates-Watts framework applies only to the complete parameter vector. Thus, guidelines developed in that framework can be misleading when the adequacy of the linear approximation is very different for different subsets. The subset curvature measures appear to be reliable indicators of the adequacy of linear approximation for an arbitrary subset of parameters in nonlinear models. Given the specific mean shift outlier model, the standard approaches to obtaining test statistics for outliers are discussed. The accuracy of outlier tests is investigated using subset curvatures.

Research on grading the quality level and developing the comparability index of the national statistics (국가승인통계 품질 등급 부여 및 상대지표 개발)

  • Shim, Kyu-Ho
    • Journal of Korean Society for Quality Management
    • /
    • v.38 no.2
    • /
    • pp.150-160
    • /
    • 2010
  • Statistics Korea has been diagnosis national statistics every year since 2006. They diagnosis over 200 kinds of national statistics. They have 7 quality dimension used for quality diagnosis. That is relevance, accuracy, Timeliness, Comparability, Coherence, Accessibility. Since we are interest in how well they produce national statistics, comparability has become the most important dimension recently. In this reason, Statistics Korea try to rating quality level and development comparability index for national statistics. This paper propose the practical method of grading the quality level and developing the comparability index of the national statistics.

Optimal Thresholds from Mixture Distributions (혼합분포에서 최적분류점)

  • Hong, Chong-Sun;Joo, Jae-Seon;Choi, Jin-Soo
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.1
    • /
    • pp.13-28
    • /
    • 2010
  • Assuming a mixture distribution for credit evaluation studies, we discuss estimating threshold methods to minimize errors that default borrowers are predicted as non defaults or non defaults are regarded as defaults. A method by using statistical hypotheses tests, the most powerful test and generalized likelihood ratio test, for the probability density functions which are defined with the score random variable and the parameter space consisted of only two elements such as the default and non default states is proposed to estimate a threshold. And anther optimal thresholds to maximize classification accuracy measures of the accuracy and the true rate for ROC and CAP curves are estimated as equations related with these probability density functions. Three kinds of optimal thresholds in terms of the hypotheses testing, the accuracy and the true rate are obtained from normal random samples with various means and variances. The sums of the type I and type II errors corresponding to each optimal threshold are obtained and compared. Finally we discuss about their efficiency and derive conclusions.

Shapriro-Francia W' Statistic Using Exclusive Monte Carlo Simulation

  • Rahman, Mezbahur;Pearson, Larry M.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.11 no.2
    • /
    • pp.139-155
    • /
    • 2000
  • An exclusive simulation study is conducted in computing means for order statistics in standard normal variate. Monte Carlo moments are used in Shapiro-Francia W' statistic computation. Finally, quantiles for Shapiro-Francia W' are generated. The study shows that in computing means for order statistics in standard normal variate, complicated distributions and intensive numerical integrations can be avoided by using Monte Carlo simulation. Lack of accuracy is minimal and computation simplicity is noteworthy.

  • PDF

Design of Case-based Intelligent Wheelchair Monitoring System

  • Kim, Tae Yeun;Seo, Dae Woong;Bae, Sang Hyun
    • Journal of Integrative Natural Science
    • /
    • v.10 no.3
    • /
    • pp.162-170
    • /
    • 2017
  • In this paper, it is aim to implement a wheelchair monitoring system that provides users with customized medical services easily in everyday life, together with mobility guarantee, which is the most basic requirement of the elderly and disabled persons with physical disabilities. The case-based intelligent wheelchair monitoring system proposed in this study is based on a case-based k-NN algorithm, which implements a system for constructing and inferring examples of various biometric and environmental information of wheelchair users as a knowledge database and a monitoring interface for wheelchair users. In order to confirm the usefulness of the case-based k-NN algorithm, the SVM algorithm showed an average accuracy of 84.2% and the average accuracy of the proposed case-based k-NN algorithm was 86.2% And showed higher performance in terms of accuracy. The system implemented in this paper has the advantage of measuring biometric information and data communication regardless of time and place and it can provide customized service of wheelchair user through user friendly interface.

A Study on Efficient Cluster Analysis of Bio-Data Using MapReduce Framework

  • Yoo, Sowol;Lee, Kwangok;Bae, Sanghyun
    • Journal of Integrative Natural Science
    • /
    • v.7 no.1
    • /
    • pp.57-61
    • /
    • 2014
  • This study measured the stream data from the several sensors, and stores the database in MapReduce framework environment, and it aims to design system with the small performance and cluster analysis error rate through the KMSVM algorithm. Through the KM-SVM algorithm, the cluster analysis effective data was used for U-health system. In the results of experiment by using 2003 data sets obtained from 52 test subjects, the k-NN algorithm showed 79.29% cluster analysis accuracy, K-means algorithm showed 87.15 cluster analysis accuracy, and SVM algorithm showed 83.72%, KM-SVM showed 90.72%. As a result, the process speed and cluster analysis effective ratio of KM-SVM algorithm was better.

On the Performance of Cuckoo Search and Bat Algorithms Based Instance Selection Techniques for SVM Speed Optimization with Application to e-Fraud Detection

  • AKINYELU, Andronicus Ayobami;ADEWUMI, Aderemi Oluyinka
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.3
    • /
    • pp.1348-1375
    • /
    • 2018
  • Support Vector Machine (SVM) is a well-known machine learning classification algorithm, which has been widely applied to many data mining problems, with good accuracy. However, SVM classification speed decreases with increase in dataset size. Some applications, like video surveillance and intrusion detection, requires a classifier to be trained very quickly, and on large datasets. Hence, this paper introduces two filter-based instance selection techniques for optimizing SVM training speed. Fast classification is often achieved at the expense of classification accuracy, and some applications, such as phishing and spam email classifiers, are very sensitive to slight drop in classification accuracy. Hence, this paper also introduces two wrapper-based instance selection techniques for improving SVM predictive accuracy and training speed. The wrapper and filter based techniques are inspired by Cuckoo Search Algorithm and Bat Algorithm. The proposed techniques are validated on three popular e-fraud types: credit card fraud, spam email and phishing email. In addition, the proposed techniques are validated on 20 other datasets provided by UCI data repository. Moreover, statistical analysis is performed and experimental results reveals that the filter-based and wrapper-based techniques significantly improved SVM classification speed. Also, results reveal that the wrapper-based techniques improved SVM predictive accuracy in most cases.

Split Effect in Ensemble

  • Chung, Dong-Jun;Kim, Hyun-Joong
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2005.11a
    • /
    • pp.193-197
    • /
    • 2005
  • Classification tree is one of the most suitable base learners for ensemble. For past decade, it was found that bagging gives the most accurate prediction when used with unpruned tree and boosting with stump. Researchers have tried to understand the relationship between the size of trees and the accuracy of ensemble. With experiment, it is found that large trees make boosting overfit the dataset and stumps help avoid it. It means that the accuracy of each classifier needs to be sacrificed for better weighting at each iteration. Hence, split effect in boosting can be explained with the trade-off between the accuracy of each classifier and better weighting on the misclassified points. In bagging, combining larger trees give more accurate prediction because bagging does not have such trade-off, thus it is advisable to make each classifier as accurate as possible.

  • PDF