• 제목/요약/키워드: Accumulation, Resistance

검색결과 302건 처리시간 0.027초

TLM pattern을 사용한 Cr/Ag 및 Ni 전극에 따른 접합 저항 연구 (Study of contact resistance using the transmission line method (TLM) pattern for metal of electrode (Cr/Ag & Ni))

  • 황민영;구기모;구선우;오규진;구상모
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.349-349
    • /
    • 2010
  • Great performance of many semiconductor devices requirs the use of low-resistance ohmic contact. Typically, transmission line method (TLM) patterns are used to measure the specific contact resistance between silicon and metal. In this works, we investigate contact resistance for metal dependent (Cr/Ag, Ni) using TLM pattern based on silicon-on-insulator (SOI) wafer. The electrode with Ni linearly increases contact resistance as the pattern distance increase from $15{\mu}m$ to $75{\mu}m$ in accumulation part, but non-linearly increase in inversion part. In additional, the electrode with Cr/Ag linearly increases contact resistance as the pattern distance increase from $15{\mu}m$ to $75{\mu}m$ in inversion part, but non-linearly increase in accumulation part.

  • PDF

Ginsenosides Rg1 regulate lipid metabolism and temperature adaptation in Caenorhabditis elegans

  • Hao Shi ;Jiamin Zhao ;Yiwen Li ;Junjie Li ;Yunjia Li;Jia Zhang ;Zhantu Qiu ;Chaofeng Wu ;Mengchen Qin ;Chang Liu ;Zhiyun Zeng ;Chao Zhang ;Lei Gao
    • Journal of Ginseng Research
    • /
    • 제47권4호
    • /
    • pp.524-533
    • /
    • 2023
  • Background: Obesity is a risk factor for aging and many diseases, and the disorder of lipid metabolism makes it prominent. This study aims to investigate the effect of ginsenoside Rg1 on aging, lipid metabolism and stress resistance Methods: Rg1 was administered to Caenorhabditis elegans (C. elegans) cultured in NGM or GNGM. The lifespan, locomotory activity, lipid accumulation, cold and heat stress resistance and related mRNA expression of the worms were examined. Gene knockout mutants were used to clarify the effect on lipid metabolism of Rg1. GFP-binding mutants were used to observe the changes in protein expression Results: We reported that Rg1 reduced lipid accumulation and improved stress resistance in C. elegans. Rg1 significantly reduced the expression of fatty acid synthesis-related genes and lipid metabolism-related genes in C. elegans. However, Rg1 did not affect the fat storage in fat-5/fat-6 double mutant or nhr-49 mutant. Combined with network pharmacology, we clarified the possible pathways and targets of Rg1 in lipid metabolism. In addition, Rg1-treated C. elegans showed a higher expression of anti-oxidative genes and heat shock proteins, which might contribute to stress resistance Conclusion: Rg1 reduced fat accumulation by regulating lipid metabolism via nhr-49 and enhanced stress resistance by its antioxidant effect in C. elegans.

Knockdown of MDR1 Increases the Sensitivity to Adriamycin in Drug Resistant Gastric Cancer Cells

  • Zhu, Chun-Yu;Lv, Yan-Ping;Yan, Deng-Feng;Gao, Fu-Lian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권11호
    • /
    • pp.6757-6760
    • /
    • 2013
  • Gastric cancer is one of the most frequently occurring malignancies in the world. Development of multiple drug resistance (MDR) to chemotherapy is known as the major cause of treatment failure for gastric cancer. Multiple drug resistance 1/P-glycoprotein (MDR1/p-gp) contributes to drug resistance via ATP-dependent drug efflux pumps and is overexpressed in many solid tumors including gastric cancer. To investigate the role of MDR1 knockdown on drug resistance reversal, we knocked down MDR1 expression using shRNA in drug resistant gastric cancer cells and examined the consequences with regard to adriamycin (ADR) accumulation and drug-sensitivity. Two shRNAs efficiently inhibited mRNA and protein expression of MDR1 in SGC7901-MDR1 cells. MDR1 knockdown obviously decreased the ADR accumulation in cells and increased the sensitivity to ADR treatment. Together, our results revealed a crucial role of MDR1 in drug resistance and confirmed that MDR1 knockdown could reverse this phenotype in gastric cancer cells.

Nano-Scale MOSFET 소자의 Contact Resistance에 대한 연구 (A Study on Contact Resistance of the Nano-Scale MOSFET)

  • 이준하;이흥주
    • 한국산학기술학회논문지
    • /
    • 제5권1호
    • /
    • pp.13-15
    • /
    • 2004
  • 고속처리를 위한 나노급의 논리소자의 개발을 위해서는 소스/드레인 영역의 저항을 감소시키는 것이 필수적이다. 반도체소자의 개발 로드맵을 제시하고 있는 ITRS의 보고에 의하면 70㎚급 MOSFET에서는 채널영역의 저항에 대비하여 그 외의 영역이 나타내는 저항성분이 약 15% 이내로 제작되어야 할 것으로 예측하고 있다. 이 기준을 유지하기 위해서는 소스/드레인 영역의 각 전류 흐름에 기인하는 가상적 기생저항에 대한 성분 분리와 이들이 가지는 저항값에 대한 정량적 계산이 이루어져야 한다. 이에 본 논문은 calibration된 TCAD simulation을 통해 나노영역의 Tr.에서 저항성분을 계산, 평가하는 방법을 연구하였다. 특히, 소스/드레인 영역의 실리사이드 접촉 저항성분들을 최소화하여 optimize하기 위한 전략을 제시한다.

  • PDF

LDD MOSFET의 기생저항에 대한 간단한 모형 (A Simple Model for Parasitic Resistances of LDD MOSFETS)

  • 이정일;윤경식;이명복;강광남
    • 대한전자공학회논문지
    • /
    • 제27권11호
    • /
    • pp.49-54
    • /
    • 1990
  • 본 논문에서는 LDD(lightly doped drain)구조를 갖는 짧은 채널 MOSFET에서의 기생저항의 게이트 전압 의존도에 대한 모형을 제시하였다. 게이트 전극 밑에 위치한 LDD 영역에서는 게이트 전압에 의해 준 이차원적인 축적층(quasi two-dimensional accumulation layer)이 형성된다. 소오스 측 LDD 기생저항을 축적층의 저항과 벌크 LDD 저항의 병렬 연결로 취급하였으며 별크 LDD 저항은 채널의 반전층 끝으로부터 ${n^+}$영역의 경계까지 퍼짐 저항으로 근사하였다. 그리고 접합에서의 도우핑 농도 구배가 LDD 저항에 미치는 영향이 토의하였다. 본 모형의 결과로 선형 영역에서는 LDD 저항이 게이트 전압의 증가에 따라 감소하고, 포화영역에서는 채널과 LDD에서 속도포화를 고려한 결과, 게이트 전압에 대해 준 일차적으로 증가하는 것으나 나타나 발표된 실험결과들과 일치하였다.

  • PDF

대한민국 성인에서 한국 성인의 지질 축적 지수와 인슐린 저항성 및 비만의 관련성 (The Relationship between Lipid Accumulation Product, Insulin Resistance and Obesity in Korean Adults)

  • 윤현
    • 대한임상검사과학회지
    • /
    • 제54권2호
    • /
    • pp.149-156
    • /
    • 2022
  • 본 연구는 지질 축적 지수(lipid accumulation product, LAP)는 중심 지질 축적을 반영하는 새로운 지표로서, 심혈관 위험이나 당뇨병의 강력한 위험인자로 알려져 있다. 본 연구의 목적은 대한민국 20 성인에서 비만의 유무에 따른 지질 축적 지수와 인슐린저항성(homeostasis model assessment of insulin resistance, HOMA-IR)의 관련성에 대하여 조사하였다. 본 연구는 2019년도 국민건강영양조사 자료(2019 Korean National Health and Nutrition Examination Survey, KNHANES V-3)를 이용하여 20세 이상의 대한민국 성인 6,090명을 대상으로 실시하였다. 본 연구결과에서 중요한 결과는 다음과 같다. 첫째, 연령, 성별, 음주습관, 흡연습관, 운동습관, 수축기 및 이완기혈압, 혈중 요소 질소 및 크레아티닌을 보정한 후의 결과에서, 전체인구(P<0.001), 비만이 아닌 군(P<0.001) 및 비만군(P<0.001)에서 LAP의 사분위수가 증가함에 따라 HOMA-IR 평균값(M±SE, 95% confidence interval)이 증가하였다. 둘째, 전체인구, 비만이 아닌 군 및 비만군에서, 공복혈당(모든 그룹, P<0.001), 인슐린(모든 그룹, P<0.001) 및 대사증후군 점수(모든 그룹, P<0.001)의 평균값(M±SE, 95% CI)은 LAP의 사분위수가 증가함에 따라 증가하였다. 결론적으로, 대한민국 성인 중 비만군과 비만이 아닌 군 모두에서 지질 축적 지수가 증가함에 따라 인슐린저항성이 증가하였다.

Scopoletin Production Related to Induced Resistance of Tobacco Plants Against Tobacco mosaic virus

  • Kim, Young-Ho;Choi, Do-Il;Yeo, Woon-Hyung;Kim, Young-Sook;Chae, Soon-Yong;Park, Eun-Kyung;Kim, Sang-Seock
    • The Plant Pathology Journal
    • /
    • 제16권5호
    • /
    • pp.264-268
    • /
    • 2000
  • A fluorescent material was accumulated in inoculated leaves showing necrotic local lesions of tobacco plants with N gene, Nicotiana tabacum cvs. Xanthi-nc NN, Samsun NN, Burley 21 and KF 114, and N. glutinosa, and Datura stramonium at the early growth stages by the inoculation of Tobacco mosaic virus (TMV). It was identified as a coumarin phytoalexin, scopoletin. Although the material was most prominently produced in TMV-inoculated tobacco leaves with local necrotic lesions, its accumulation was also noted in uninoculated leaves of TMV-inoculated plants. Its accumulation was somewhat greater in high resistance-induced leaves than low resistance-induced and intact leaves. Scopoletin treatment induced the expression of a pathogenesis-related protein, PR-1, prominently at the concentration of 500 or 1000 ${\mu}$g/ml. This suggests that scopoletin is a phytoalexin abundantly accumulating in N gene-containing resistant plants in response to TMV infection, and may be related to hypersensitive responses (HR) and systemic acquired resistance (SAR) in the resistant tobacco plants.

  • PDF

TMV 감염에 의한 고추의 역병 저항성 유도 (Induction of Resistance by TMV Infection in Capsicum annuum Against Phytophthora Blight)

  • 이성희;이주연;차재순
    • 한국식물병리학회지
    • /
    • 제14권4호
    • /
    • pp.319-324
    • /
    • 1998
  • Induction of systemic acquired resistance (SAR) against phytophthora blight and pathogenesis-related (PR) protein accumulation by TMV infection in pepper plant (Capsicum annuum cv. Nockwang) were examined to understand the mechanism of the systemic acquired resistance in pepper plant. The zoospore suspension of Phytophthora capsici was inoculated on stem of pepper plant in which TMV-pepper strain had been inoculated on fully expanded upper leaves, and thephytopha blight incidence was examined. Both disease severity and lesion length of phytophthora blight were much smaller in TMV pre-inoculated pepper plant than in uninoculated control plants. The phytophthora blight incidence was decreased about 50% in the TMV pre-inoculated pepper, compared to the uninoculated control plant at 10 days after P. capsici inoculation. Accumulation of PR1 and PR5 proteins in intercellular fluid of TMV-inoculated and uninoculated upper leaves were monitored by immuno-blot with tobacco P1b and PR5a, antibody during induction of SAR. PR1 and PR5 were detected from 24 hours after TMV inoculation in both TMV-inoculated and uninouclated upper leaves, and increased rapidly in TMV-inoculation in uninoculated upper leaves were defoliated. PR5 could be detected upto 20 days after TMV inoculation in uninoculated upper leaves. These results suggest that TMV infection induces SAR against phytophthora blight in pepper plant, and that PR proteins are accumulated very rapidly during induction of SAR and maintained for quite long time in pepper plant.

  • PDF

Platinum Transporters and Drug Resistance

  • Choi, Min-Koo;Kim, Dae-Duk
    • Archives of Pharmacal Research
    • /
    • 제29권12호
    • /
    • pp.1067-1073
    • /
    • 2006
  • Cisplatin, a platinum coordinated complex, is a widely used antineoplastic agent for the treatment of metastatic tumors of the testis, metastatic ovarian tumors, lung cancer, advanced bladder cancer and many other solid tumors. The cytotoxic action of the drug is often thought to be associated with its ability to bind DNA to form cisplatin-DNA adducts. The development of resistance to cisplatin during treatment is common and constitutes a major obstacle to the cure of sensitive tumors. Although to understand the clinically relevant mechanisms of resistance, many studies have been aimed at clarifying the biochemical/molecular alterations of cisplatin-resistance cells, these studies did not conclusively identify the basis of cellular resistance to cisplatin. In this review, cisplatin resistance was discussed in terms of the relevant transporters, such as copper transporters (CTRs), organic cation transporters (OCTs) and multi-drug resistance related transporters (MDRs). These transporters seem to be contributed to cisplatin resistance through the reduction of drug accumulation in the cell. Better understanding the mechanism of cisplatin resistance associated with transporters will provide the useful informations for overcoming the cisplatin resistance.

p-Pillar 영역의 두께와 농도에 따른 4H-SiC 기반 Superjunction Accumulation MOSFET 소자 구조의 최적화 (Optimization of 4H-SiC Superjunction Accumulation MOSFETs by Adjustment of the Thickness and Doping Level of the p-Pillar Region)

  • 정영석;구상모
    • 한국전기전자재료학회논문지
    • /
    • 제30권6호
    • /
    • pp.345-348
    • /
    • 2017
  • In this work, static characteristics of 4H-SiC SJ-ACCUFETs were obtained by adjusting the p-pillar region. The structure of this SJ-ACCUFET was designed by using a two-dimensional simulator. The static characteristics of SJ-ACCUFET, such as the breakdown voltages, on-resistance, and figure of merits, were obtained by varying the p-pillar doping concentration from $1{\times}10^{15}cm^{-3}$ to $5{\times}10^{16}cm^{-3}$ and the thickness from $0{\mu}m$ to $9{\mu}m$. The doping concentration and the thickness of p-pillar region are closely related to the break down voltage and on-resistance and threshold voltages. Hence a silicon carbide SJ-ACCUFET structure with highly intensified breakdown voltages and low on-resistances with good figure of merits can be achieved by optimizing the p-pillar thickness and doping concentration.