Platinum Transporters and Drug Resistance

  • Choi, Min-Koo (Department of Pharmaceutics, College of Pharmacy, Seoul National University) ;
  • Kim, Dae-Duk (Department of Pharmaceutics, College of Pharmacy, Seoul National University)
  • Published : 2006.12.31

Abstract

Cisplatin, a platinum coordinated complex, is a widely used antineoplastic agent for the treatment of metastatic tumors of the testis, metastatic ovarian tumors, lung cancer, advanced bladder cancer and many other solid tumors. The cytotoxic action of the drug is often thought to be associated with its ability to bind DNA to form cisplatin-DNA adducts. The development of resistance to cisplatin during treatment is common and constitutes a major obstacle to the cure of sensitive tumors. Although to understand the clinically relevant mechanisms of resistance, many studies have been aimed at clarifying the biochemical/molecular alterations of cisplatin-resistance cells, these studies did not conclusively identify the basis of cellular resistance to cisplatin. In this review, cisplatin resistance was discussed in terms of the relevant transporters, such as copper transporters (CTRs), organic cation transporters (OCTs) and multi-drug resistance related transporters (MDRs). These transporters seem to be contributed to cisplatin resistance through the reduction of drug accumulation in the cell. Better understanding the mechanism of cisplatin resistance associated with transporters will provide the useful informations for overcoming the cisplatin resistance.

Keywords

References

  1. Aller, S. G., Eng, E. T., De Feo, C. J., and Unger, V. M., Eukaryotic Ctr copper uptake transporters require two faces of the third transmembrane domain for helix packing, oligomerization, and function. J. Biol. Chem., 279, 53435- 53441 (2004) https://doi.org/10.1074/jbc.M409421200
  2. Aller, S. G. and Unger, V. M., Projection structure of the human copper transporter CTR1 at 5-A resolution reveals a compact trimer with a novel channel-like architecture. Proc. Natl. Acad. Sci., 103, 3627-3632 (2006)
  3. Amaravadi, R., Glerum, D. M., and Tzagoloff, A., Isolation of a cDNA encoding the human homolog of COX17, a yeast gene essential for mitochondrial copper recruitment. Hum. Genet., 99, 329-333 (1997) https://doi.org/10.1007/s004390050367
  4. Andrews, P. A. and Howell, S. B., Cellular pharmacology of cisplatin: perspectives on mechanisms of acquired resistance. Cancer Cells, 2, 35-43 (1990)
  5. Beretta, G. L., Gatti, L., Tinelli, S., Corna. E., Colangelo, D., Zunino, F., and Perego, P., Cellular pharmacology of cisplatin in relation to the expression of human copper transporter CTR1 in different pairs of cisplatin-sensitive and -resistant cells. Biochem. Pharmacol., 68, 283-291 (2004) https://doi.org/10.1016/j.bcp.2004.03.022
  6. Cole, S. P., Sparks, K. E., Fraser, K., Loe, D. W., Grant, C. E., Wilson, G. M., and Deeley, R. G., Pharmacological characterization of multidrug resistant MP-transfected human tumor cells. Cancer Res., 54, 5902-5910 (1994)
  7. Culotta, V. C., Klomp, L. W., Strain, J., Casareno, R. L., Krems, B., and Gitlin, J. D., The copper chaperone for superoxide dismutase. J. Biol. Chem., 272, 23469-23472 (1997) https://doi.org/10.1074/jbc.272.38.23469
  8. Culotta, V. C., Lin, S. J., Schmidt, P., Klomp, L.W., Casareno, R. L., and Gitlin, J., Intracellular pathways of copper trafficking in yeast and humans. Adv. Exp. Med. Biol., 448, 247-254 (1999)
  9. Dancis, A., Haile, D., Yuan, D. S., and Klausner, R. D., The saccharomyces cerevisiae copper transport protein (Ctr1p). Biochemical characterization, regulation by copper, and physiologic role in copper uptake. J. Biol. Chem., 269, 25660- 25667 (1994)
  10. Dedoussis, G. V., and Andrikopoulos, N. K., Glutathionine depletion restores the susceptibility of cisplatin-resistant chronic myelogenous leukemia cell lines to natural killer cellmediated cells via necrosis rather than apoptosis. Eur. J. Cell. Biol., 89, 608-614 (2001)
  11. de Jongh, F. E., van Veen, R. N., Veltman, S. J., de Wit, R., van der Burg, M. E., van den Bent, M. J., Planting, A. S., Graveland, W. J., Stoter, G., and Verweij, J., Weekly highdose cisplatin is a feasible treatment option: analysis on prognostic factors for toxicity in 400 patients. Br. J. Cancer, 88, 1199-1206 (2003) https://doi.org/10.1038/sj.bjc.6600884
  12. Dobyan, D. C., Levi, J., Jacobs, C., Kosek, J., and Weiner, M. W., Mechanism of cis-platinum nephrotoxicity. II. Morphologic observations. J. Pharmacol. Exp. Ther., 213, 551–556 (1980)
  13. Eisses, J. F., Chi, Y., and Kaplan, J. H., Stable plasma membrane levels of hCTR1 mediate cellular copper uptake. J. Biol. Chem., 280, 9635-9639 (2005) https://doi.org/10.1074/jbc.M500116200
  14. Eisses, J. F. and Kaplan, J. H., Molecular characterization of hCtr1, the human copper uptake protein. J. Biol. Chem., 277, 29162-29171 (2002) https://doi.org/10.1074/jbc.M203652200
  15. Eisses, J. F. and Kaplan, J. H., The mechanism of copper uptake mediated by human CTR1: a mutational analysis. J. Biol. Chem., 280, 37159-37168 (2005) https://doi.org/10.1074/jbc.M508822200
  16. Fink, D., Aebi, S., and Howell, S.B., The role of DNA mismatch repair in drug resistance. Clin. Cancer Res., 4, 1-6 (1998)
  17. Gately, D. P. and Howell, S. B., Cellular accumulation of the anticancer agent cisplatin: a review. Br. J. Cancer., 67, 1171- 1176 (1993) https://doi.org/10.1038/bjc.1993.221
  18. Giaccone, G., Clinical perspectives on platinum resistance. Drugs, 59, 9-17 (2000)
  19. Godwin, A. K., Meister, A., O'Dwyer, P. J., Huang, C. S., Hamilton, T. C., and Anderson, M. E., High resistance to cisplatin in human ovarian cancer cells is associated with marked increae of glutathione synthesis. Proc. Natl. Acad. Sci., 89, 3070-3074 (1992)
  20. Guo, Y., Smith, K., Lee, J., Thiele, D. J., and Patris, M. J., Identification of methionine-rich clusters that regulate copperstimulated endocytosis of the human Ctr1 copper transporter. J. Biol. Chem., 279, 17428-17483 (2004a) https://doi.org/10.1074/jbc.M401493200
  21. Guo, Y., Smith, K., and Petris, M. J., Cisplatin stabilizes a multimeric complex of the human Ctr1 copper transporter: Requirement for the extracellular methionine-rich clusters. J. Biol. Chem., 279, 46393-46399 (2004b) https://doi.org/10.1074/jbc.M407777200
  22. Helleman, J., Burger, H., Hamelers, I. H., Boersma, A. W., de Kroon, A. I., Stoter, G., and Nooter, K., Impaired Cisplatin Influx in an A2780 Mutant Cell Line: Evidence for a Putative, Cis-Configuration-Specific, Platinum Influx Transporter. Cancer Biol. Ther., (2006). In press
  23. Holzer, A. K., Katano, K., Klomp, L. W., and Howell, S. B., Cisplatin rapidly down-regulates its own influx transporter hCTR1 in cultured human ovarian carcinoma cells. Clin. Cancer Res., 10, 6744-6749 (2004) https://doi.org/10.1158/1078-0432.CCR-04-0748
  24. Howell, S. B., Increased expression of ATP7A mediates platinum resistance. Clin. Cancer Res., 10, 4661-4669 (2004) https://doi.org/10.1158/1078-0432.CCR-04-0137
  25. Ichimura, T., Hung, C. C., Yang, S. A., Stevens, J. L., and Bonventre, J. V., Kidney injury molecule-1: a tissue and urinary biomarker for nephrotoxicant-induced renal injury. Am. J. Physiol. Renal Physiol., 286, F552-F553 (2004) https://doi.org/10.1152/ajprenal.00285.2002
  26. Ikeda, K., Miura, K., Himeno, S., Imura, N., and Naganuma, A., Glutathione content is correlated with the sensitivity of lines of PC12 cells to cisplatin without a corresponding change in the accumulation of platinum. Mol. Cell. Biochem., 219, 51- 56 (2001) https://doi.org/10.1023/A:1011083429704
  27. Ikuta, K., Takemura, K., Sasaki, K., Kihara, M., Nishimura, M., Ueda, N., Naito, S., Lee, E., Shimizu, E., and Yamauch, A., Expression of multidrug resistance proteins and accumulation of cisplatin in human non-small cell lung cancer cells. Biol. Pharm. Bull., 28, 707-712 (2005) https://doi.org/10.1248/bpb.28.707
  28. Ishida, S., Lee, J., Thiele, D. J., and Herskowitz, I., Uptake of the anticancer drug cisplatin mediated by copper transporter Ctr1 in yeast and mammals. Proc. Natl. Acad. Sci., 99, 14298-14302 (2002)
  29. Ishikawa, T. and Ali-Osmann, F., Glutathione-associated cisdiamminedichloroplatinum (II) metabolism and ATP-dependent efflux from leukemia cells. Molecular characterization of glutathione-platinum complex and its biological significance. J. Biol. Chem., 268, 20116-20125 (1993)
  30. Jansen, B. A., Brouwer, J., and Reedijk, J., Glutathione induces cellular resistance against cationic dinuclear platinum anticancer drugs. J. Inorg. Biochem., 89, 197-202 (2002) https://doi.org/10.1016/S0162-0134(02)00381-1
  31. Johnson, S. W., Laub, P. B., Beesley, J. S., Ozols, R. F., and Hamilton, T. C., Increased platinum-DNA damage tolerance is associated with cisplatin resistance and cross-resistance to various chemotherapeutic agents in unrelated human ovarian cancer cell lines. Cancer Res., 57, 850-856 (1997)
  32. Kapp, T., Muller, S., and Gust, R., Dinuclear Alkylamine Platinum( II) Complexes of [1,2-Bis(4-fluorophenyl)ethylenediamine] platinum(II): Influence of Endocytosis and Copper and Organic Cation Transport Systems on Cellular Uptake. Chem. Med. Chem., 1, 560-564 (2006) https://doi.org/10.1002/cmdc.200500096
  33. Kanzaki, A., Toi, M., Neamati, N., Miyashita, H., Oubu, M., Nakayama, K., Bando, H., Ogawa, K., Mutoh, M., Mori, S., Terada, K., Sugiyama, T., Fukumoto, M., and Takebayashi, Y., Copper-transporting P-type adenosine triphosphatase (ATP7B) is expressed in human breast carcinoma. Jpn. J. Cancer Res., 93, 70-77 (2002) https://doi.org/10.1111/j.1349-7006.2002.tb01202.x
  34. Katano, K., Kondo, A., Safaei, R., Holzer, A., Samimi, G., Mishima, M. Kuo, Y. M., Rochdi, M., and Howell, S. B., Acquisition of resistance to cisplatin is accompanied by changes in the cellular pharmacology of Copper. Cancer Res., 62, 6559-6565 (2002)
  35. Katano, K., Safaei, R., Samimi, G., Holzer, A., Rochdi, M., and Howell, S.B., The copper export pump ATP7B modulates the cellular pharmacology of carboplatin in ovarian carcinoma cells. Mol. Pharmacol., 64, 466-473 (2003) https://doi.org/10.1124/mol.64.2.466
  36. Klomp, A. E., Juijn, J. A., van der gun, L. T., van den Berg, I. E., Berger, R., and Klomp, L. W., The N-terminus of the human copper transporter 1 (hCTR1) is localized extracellularly, and interacts with itself. Biochem. J., 370, 881-889 (2003) https://doi.org/10.1042/BJ20021128
  37. Klomp, L. W., Lin, S. J., Yuan, D. S., Klausner, R. D., Culotta, V. C., and Gitlin, J. D., Identification and functional expression of HAH1, a novel human gene involved in copper homeostasis. J. Biol. Chem., 272, 9221-9226 (1997) https://doi.org/10.1074/jbc.272.14.9221
  38. Kollmannsberger, C., Nichols, C., and Bokemeyer, C., Recent advances in management of patients with platinum-refractory testicular germ cell tumors. Cancer, 106, 1217-1226 (2006) https://doi.org/10.1002/cncr.21742
  39. Komatsu, M., Sumizawa, T., Mutoh, M., Chen, Z. S., Terada, K., Furukawa, T., Yang, X. L., Gao, H., Miura, N., Sugiyama, T., and Akiyama, S., Copper-transporting P-type adenosine triphosphatase (ATP7B) is associated with cisplatin resistance. Cancer Res., 60, 1312-1316 (2000)
  40. Kuo, Y. M., Zhou, B., Cossco, D., and Gitschier, J., The copper transporter CTR1 provides and essential function in mammalian embryonic development. Proc. Natl. Acad. Sci. U.S.A., 98, 6836-6841 (2001)
  41. Lai, G. M., Ozols, R. F., Young, R. C., and Hamilton, T. C., Effect of glutathione on DNA repair in cisplatin-resistant human ovarian cancer cell lines. J. Natl. Cancer Inst., 81, 535-539 (1989) https://doi.org/10.1093/jnci/81.7.535
  42. Lee, J., Pena, M. M., Nose, Y., and Thiele, D. J., Biochemical characterization of the human copper transporter Ctr1. J. Biol. Chem., 277, 4380-4387 (2002) https://doi.org/10.1074/jbc.M104728200
  43. Lee, J., Prohaska, J. R., Dagenais, S. L., Glover, T. W., and Thiele, D. J., Isolation of a murine copper transporter gene, tissue specific expression and functional complementation of a yeast copper transport mutant. Gene, 254, 87-96 (2000) https://doi.org/10.1016/S0378-1119(00)00287-0
  44. Lee, J., Prohaska, J. R., and Thiele, D. J., Essential role for mammalian copper transporter Ctr1 in copper homeostasis ans embryonic development. Proc. Natl. Acad. Sci. U.S.A., 98, 6842-6847 (2001)
  45. Lin, X., Okuda, T., Holzer, A., and Howell, S. B., The copper transporter CTR1 regulates cisplatin uptake in Saccharomyces cerevisiae. Mol. Pharmacol., 62, 1154–1159 (2002) https://doi.org/10.1124/mol.62.5.1154
  46. Lokich, J. and Anderson, N., Carboplatin versus cisplatin in solid tumors: an analysis of the literature. Ann Oncol., 9, 13- 21 (1998) https://doi.org/10.1023/A:1008215213739
  47. Ludwig, T., Riethmuller, C., Gekle, M., Schwerdt, G., and Oberleithner, H., Nephrotoxicity of platinum complexes is related to basolateral organic cation transport. Kidney Int., 66, 196-202 (2004) https://doi.org/10.1111/j.1523-1755.2004.00720.x
  48. Masters, J. R., Thomas, R., Hall, A. G., Hogarth, L., Matheson, E. C., Cattan, A. R., Lohrer, A. R., and Lohrer, H., Sensitivity of testis tumor cells to chemotherapeutic drugs: role of detoxifying pathways. Eur. J. Cancer, 32A,1248-1253 (1996)
  49. Meijer, C., Mulder, N. H., Timmer-Bosscha, H., Sluiter, W. J., Meersma, G. J., and de Vries, E. G., Relationship of cellular glutathione to the cytotoxicity and resistance of seven platinum compounds. Cancer Res., 52, 6885-6889 (1992)
  50. Minamino, T., Tamai, M., Itoh, Y., Tatsumi, Y., Nomura, M., Yokogawa, K., Suzuki, H., Sugiyama, Y., Ohshima, T., and Miyamoto, K., In vivo cisplatin resistance depending upon canalicular multispecific organic anion transporter (cMOAT). Jpn. J. Cancer Res., 90, 1171-1178 (1999) https://doi.org/10.1111/j.1349-7006.1999.tb00692.x
  51. Mishima, K., Baba, A., Matsuo, M., Itoh, Y., and Oishi, R., Protective effect of cyclic AMP against cisplatin-induced nephrotoxicity. Free Rad. Biol. Med., 40, 1564-1577 (2006) https://doi.org/10.1016/j.freeradbiomed.2005.12.025
  52. Nakayama, K., Kanazaki, A., Ogawa, K., Miyazaki, K., Neamati, N., and Takebayashi, Y., Copper-transporting P-type adenosine triphosphatase (ATP7B) as a cisplatin based chemoresistance marker in ovarian carcinoma: comparative analysis with expression of MDR1, MRP1, MRP2, LRP, and BCRP. Int. J. Cancer, 101, 488-495 (2002) https://doi.org/10.1002/ijc.10608
  53. Okuda, M., Tsuda, K., Masaki, K., Hashimoto, Y., and Inui, K., Cisplatin-induced toxicity in LLC-PK1 kidney epithelial cells: role of basolateral membrane transport. Toxicol. Lett., 106, 229–235 (1999) https://doi.org/10.1016/S0378-4274(99)00071-5
  54. Ooi, C. E., Rabinovich, E., Dancis, A., Bonifacino, J. S., and Klausner, R. D., Copper-dependent degradation of the Saccharomyces cerevisiae plasma membrane copper transporter Ctr1p in the apparent absence of endocytosis. EMBO. J., 15, 3515-3523 (1996)
  55. Pena, M. J. O., Puig, S., and Thiele, D. J., Copper-specific transcriptional repression of yeast genes encoding critical components in the copper transport pathway. J. Biol. Chem., 275, 33244-33251 (2000) https://doi.org/10.1074/jbc.M005392200
  56. Petris, M. J., Smith, K., Lee, J., and Thieles, D. J., Copperstimulated endocytosis and degradation of the human copper transporter, hCtr1. J. Biol. Chem., 278, 9639-9646 (2003) https://doi.org/10.1074/jbc.M209455200
  57. Prestayko, A. W., D'Aoust, J. C., Issell, B. F., and Crook, S. T., Cisplatin (cis-diamminedichloroplatinum II). Cancer Treat. Rev., 6, 17-39 (1979) https://doi.org/10.1016/S0305-7372(79)80057-2
  58. Pufahl, R. A., Singer, C. P., Peariso, K. L., Lin, S. J., Schmidt, P. J., Fahrni, C. J., Culotta, V. C., Penner-Hahn, J. E., and O'Halloran, T. V., Metal ion chaperone function of the soluble Cu(I) receptor Atox1. Science, 278, 853-856 (1997) https://doi.org/10.1126/science.278.5339.853
  59. Puig, S., Lee, J., Lau, M., and Thiele, D. J., Biochemical and Genetic analyses of yeast and human high affinity copper transporters suggest a conserved mechanism for copper uptake. J. Biol. Chem., 277, 26021-26030 (2002) https://doi.org/10.1074/jbc.M202547200
  60. Puig, S. and Thiele, D. J., Molecular mechanisms of copper uptake and distribution. Curr. Opin. Chem. Biol., 6, 171-180 (2002) https://doi.org/10.1016/S1367-5931(02)00298-3
  61. Raymond, E., Faivre, S., Chaney, S., Woynarowski, J., and Cvitkovic, E., Cellular and molecular pharmacology of oxaliplatin. Mol. Cancer. Ther., 1, 227-235 (2002)
  62. Ryoyano, A., Fernandez, C., Sancho, P., de Blas, E., and Aller, P., Effect of glutathione depletion on antitumor drug toxicity (apoptosis and necrosis) in U-937 human promonocytic cells. The role of intracellular oxidation. J. Biol. Chem., 276, 47105- 17115 (2001)
  63. Safaei, R. and Howell, S. B., Copper transporters regulate the cellular pharmacology and sensitivity to Pt drugs. Crit. Rev. Oncol. Hematol., 53, 13-23 (2005) https://doi.org/10.1016/j.critrevonc.2004.09.007
  64. Samimi, G., Varki, N. M., Wilczynski, S., Safaei, R., Alberts, D. S., and Howell, S. B., Increase in expression of the copper transporter ATP7A during platinum drug-based treatment is associated with poor survival in ovarian cancer patients. Clin. Cancer Res., 9, 5853-5859 (2003)
  65. Sasada, T., Nakamura, H., Ueda, S., Iwata, S., Ueno, M., Takabayashi, A., and Yodoi, J., Secretion of thioredoxin enhznces cellular resistance to cis-diamminedichloroplatinum (II). Antioxid. Redox. Signal., 2, 695-705 (2000) https://doi.org/10.1089/ars.2000.2.4-695
  66. Schondorf, T., Neumann, R., Benz, C., Riffelmann, M., Gohring, U. J., Sartorius, J., von Konig, C. H., Breidenbach, M., Valter, M. M., Hoopmann, M., Di Nicolantonio, F., and Kurbacher, C. M., Cisplatin, doxorubicin and packlitaxel induce mdr1 gene transcription in ovarian cancer cell lines. Recent Results Cancer Res., 161, 111-116 (2003)
  67. Schroder, C. P., Godwin, A. K., O'Dwyer, P. J., Tew, K. D., Hamilton, T. C., and Ozols, R. F., Glutathione and drug resistance. Cancer Invest., 14,158-168 (1996) https://doi.org/10.3109/07357909609018891
  68. Siddik, Z. H., Biochemical and molecular mechanisms of cisplatin resistance. Cancer Treat Res., 112, 263-284 (2002)
  69. Siddik, Z. H., Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene, 22, 7265-7279 (2003) https://doi.org/10.1038/sj.onc.1206933
  70. Song, I. S., Savaraj, N., Siddik, Z. H., Liu, P., Wei, Y., Wu, C. J., and Kuo, M. T., Role of human copper transporter Ctr1 in the transport of platinum-based antitumor agents in cisplatinsensitive and cisplatin-resistant cells. Mol. Cancer Ther., 3, 1543-1549 (2004)
  71. Thadhani, R., Pascual, M., and Bonventre, J. V., Acute renal failure. N. Engl. J. Med., 334, 1448-1460 (1996) https://doi.org/10.1056/NEJM199605303342207
  72. Urakami, Y., Okuda, M., Masuda, S., Saito, H., and Inui, K., Functional characteristics and membrane localization of rat multispecific organic cation transporters, OCT1 and OCT2, mediating tubular secretion of cationic drugs. J. Pharmacol. Exp. Ther., 287, 800-805 (1998)
  73. Valentine, J. S. and Gralla, E. B., Delivering copper inside yeast and human cells. Science, 278, 817-818 (1997) https://doi.org/10.1126/science.278.5339.817
  74. Valko, M., Rhodes, C. J., Moncol, j., Izakovic, M., and Masur, M., Free radicals, metals and antioxidants in oxidative stressinduced cancer. Chemico-Biolog. Inter., 160, 1-40 (2006) https://doi.org/10.1016/j.cbi.2005.12.009
  75. Weiss, R. B., and Christian, M. C., New cisplatin analogues in development. Drugs, 46, 360-377 (1993) https://doi.org/10.2165/00003495-199346030-00003
  76. Yao, K. S., Godwin, A. K., Johnson, S. W., Ozols, R. F., O'Dwyer, P. J., and Hamilton, T. C., Evidence for altered regulation of gamma-glutamylcystein gene expression among cisplatinsensitive and cisplatin-resistant human ovarian cancer cell lines. Cancer Res., 55, 4367-4374 (1995)
  77. Yonezawa, A., Satohiro, M., Nishihara, K., Yano, I., Katsura, T., and Inui, K. I., Association between tubular toxicity of cisplatin and expression of organic cation transporter rOCT2 (Slc22a2) in the rat. Biolchem. Pharmacol., 70, 1823-1831 (2005) https://doi.org/10.1016/j.bcp.2005.09.020