• Title/Summary/Keyword: Accumulated rainfall

Search Result 135, Processing Time 0.029 seconds

Long-Term Change of the Amount of Soil Erosion in Forest Fire (산불 피해지 토양침식량의 장기적인 변화에 관한 연구)

  • Ma, Ho-Seop;Jeong, Won-Ok
    • Journal of Korean Society of Forest Science
    • /
    • v.97 no.4
    • /
    • pp.363-367
    • /
    • 2008
  • The purpose of this study was to evaluate the change of the amount of soil erosion by comparisons between burned and unburned area after forest fire. The amount of soil erosion in burned area was more high 11.2 times in year of fire, 8.4 times in 1 later year, 2 times in 5 later year and 1.3 times in 10 later year than in unburned area. The ratio of soil erosion in burned area was reduced to 98% of 10 later year as compared to the year of fire. Therefore, the soil erosion in the burned area almost tended to stabilization like unburned area passing ten year after forest fire. The most affecting factors on the amount of soil erosion in burned and unburned area were unit rainfall, number of unit rainfall and number of rainfall accumulated.

Winter Wheat Grain Yield Response to Fungicide Application is Influenced by Cultivar and Rainfall

  • Byamukama, Emmanuel;Ali, Shaukat;Kleinjan, Jonathan;Yabwalo, Dalitso N.;Graham, Christopher;Caffe-Treml, Melanie;Mueller, Nathan D.;Rickertsen, John;Berzonsky, William A.
    • The Plant Pathology Journal
    • /
    • v.35 no.1
    • /
    • pp.63-70
    • /
    • 2019
  • Winter wheat is susceptible to several fungal pathogens throughout the growing season and foliar fungicide application is one of the strategies used in the management of fungal diseases in winter wheat. However, for fungicides to be profitable, weather conditions conducive to fungal disease development should be present. To determine if winter wheat yield response to fungicide application at the flowering growth stage (Feekes 10.5.1) was related to the growing season precipitation, grain yield from fungicide treated plots was compared to non-treated plots for 19 to 30 hard red winter wheat cultivars planted at 8 site years from 2011 through 2015. At all locations, Prothioconazole + Tebuconazole or Tebuconazole alone was applied at flowering timing for the fungicide treated plots. Grain yield response (difference between treated and non-treated) ranged from 66-696 kg/ha across years and locations. Grain yield response had a positive and significant linear relationship with cumulative rainfall in May through June for the mid and top grain yield ranked cultivars ($R^2=54%$, 78%, respectively) indicating that a higher amount of accumulated rainfall in this period increased chances of getting a higher yield response from fungicide application. Cultivars treated with a fungicide had slightly higher protein content (up to 0.5%) compared to non-treated. These results indicate that application of fungicides when there is sufficient moisture in May and June may increase chances of profitability from fungicide application.

Analysis of Available Time of Cloud Seeding in South Korea Using Radar and Rain Gauge Data During 2017-2022 (2017-2022년 남한지역 레이더 및 지상 강수 자료를 이용한 인공강우 항공 실험 가능시간 분석)

  • Yonghun Ro;Ki-Ho Chang;Yun-kyu Lim;Woonseon Jung;Jinwon Kim;Yong Hee Lee
    • Journal of Environmental Science International
    • /
    • v.33 no.1
    • /
    • pp.43-57
    • /
    • 2024
  • The possible experimental time for cloud seeding was analyzed in South Korea. Rain gauge and radar precipitation data collected from September 2017 to August 2022 in from the three main target stations of cloud seeding experimentation (Daegwallyeong, Seoul, and Boryeong) were analyzed. In this study, the assumption that rainfall and cloud enhancement originating from the atmospheric updraft is a necessary condition for the cloud seeding experiment was applied. First, monthly and seasonal means of the precipitation duration and frequency were analyzed and cloud seeding experiments performed in the past were also reanalyzed. Results of analysis indicated that the experiments were possible during a monthly average of 7,025 minutes (117 times) in Daegwallyeong, 4,849 minutes (81 times) in Seoul, and 5,558 minutes (93 times) in Boryeong, if experimental limitations such as the insufficient availability of aircraft is not considered. The seasonal average results showed that the possible experimental time is the highest in summer at all three stations, which seems to be owing to the highest precipitable water in this period. Using the radar-converted precipitation data, the cloud seeding experiments were shown to be possible for 970-1,406 hours (11-16%) per year in these three regions in South Korea. This long possible experimental time suggests that longer duration, more than the previous period of 1 hour, cloud seeding experiments are available, and can contribute to achieving a large accumulated amount of enhanced rainfall.

A Study on the Effect of Ground-based GPS Data Assimilation into Very-short-range Prediction Model (초단기 예측모델에서 지상 GPS 자료동화의 영향 연구)

  • Kim, Eun-Hee;Ahn, Kwang-Deuk;Lee, Hee-Choon;Ha, Jong-Chul;Lim, Eunha
    • Atmosphere
    • /
    • v.25 no.4
    • /
    • pp.623-637
    • /
    • 2015
  • The accurate analysis of water vapor in initial of numerical weather prediction (NWP) model is required as one of the necessary conditions for the improvement of heavy rainfall prediction and reduction of spin-up time on a very-short-range forecast. To study this effect, the impact of a ground-based Global Positioning System (GPS)-Precipitable Water Vapor (PWV) on very-short-range forecast are examined. Data assimilation experiments of GPS-PWV data from 19 sites over the Korean Peninsula were conducted with Advanced Storm-scale Analysis and Prediction System (ASAPS) based on the Korea Meteorological Administration's Korea Local Analysis and Prediction System (KLAPS) included "Hot Start" as very-short-range forecast system. The GPS total water vapor was used as constraint for integrated water vapor in a variational humidity analysis in KLAPS. Two simulations of heavy rainfall events show that the precipitation forecast have improved in terms of ETS score compared to the simulation without GPS-PWV data. In the first case, the ETS for 0.5 mm of rainfall accumulated during 3 hrs over the Seoul-Gyeonggi area shows an improvement of 0.059 for initial forecast time. In other cases, the ETS improved 0.082 for late forecast time. According to a qualitative analysis, the assimilation of GPS-PWV improved on the intensity of precipitation in the strong rain band, and reduced overestimated small amounts of precipitation on the out of rain band. In the case of heavy rainfall during the rainy season in Gyeonggi province, 8 mm accompanied by the typhoon in the case was shown to increase to 15 mm of precipitation in the southern metropolitan area. The GPS-PWV assimilation was extremely beneficial to improving the initial moisture analysis and heavy rainfall forecast within 3 hrs. The GPS-PWV data on variational data assimilation have provided more useful information to improve the predictability of precipitation for very short range forecasts.

Effect of Rainfall During the Blossom Infection Risk Period on the Outbreak of Fire Blight Disease in Chungnam province (꽃감염 위험기간 중의 강우가 충남지역 과수 화상병 발병에 미치는 영향)

  • Byungryun Kim;Yun-Jeong Kim;Mi-Kyung Won;Jung-Il Ju;Jun Myoung Yu;Yong-Hwan Lee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.302-310
    • /
    • 2023
  • In this study, the extent of the impact of rainfall on the outbreak of fire blight during the blossom infection risk period was explored. In the Chungnam province, the outbreak of fire blight disease began in 2015, and changes in the outbreak's scale were most pronounced between 2020 and 2022, significantly escalating from 63 orchards in 2020 to 170 orchards in 2021, before decreasing to 46 orchards in 2022. In 2022, the number of incidence has decreased and the number of canker symptom in branches has also decreased. It was evaluated that the significant decrease of fire blight disease in 2022 was due to the dry weather during the flowering season. In other words, this yearly fluctuation in fire blight outbreaks was correlated with the presence or absence of rainfall and accumulated precipitation during the blossom infection risk period. This trend was observed across all surveyed regions where apples and pears were cultivated. Among the weather conditions influencing the blossom infection risk period, rainfall notably affected the activation of pathogens from over-wintering cankers and flower infections. In particular, precipitation during the initial 3 days of the blossom infection risk warning was confirmed as a decisive factor in determining the outbreak's scale.

Drought impact on water quality environment through linkage analysis with meteorological data in Gamcheon mid-basin (기상자료와의 연계분석을 통한 수질환경에 대한 가뭄영향 연구 - 감천중권역을 대상으로)

  • Jo, Bugeon;Lee, Sangung;Kim, Young Do;Lee, Joo-Heon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.11
    • /
    • pp.823-835
    • /
    • 2023
  • Recently, due to the increase in abnormal climate, rainfall intensity is increasing and drought periods are continuing. These environmental changes lead to prolonged drought conditions and difficulties in real-time recognition. In general, drought can be judged by the amount of precipitation and the number of days without rainfall. In determining the impact of drought, it is divided into meteorological drought, agricultural drought, and hydrological drought and evaluation is made using the drought index, but environmental drought evaluation is insufficient. The river water quality managed through the total water pollution cap system is vulnerable to the effects of such drought. In this study, we aim to determine the drought impact on river water quality and quantify the impact of prolonged drought on water quality. The impact of rain-free days and accumulated precipitation on river water quality was quantitatively evaluated. The Load Duration Curve (LDC), which is used to evaluate the water quality of rivers, was used to evaluate water pollution occurring at specific times. It has been observed that when the number of consecutive rainless days exceeds 14 days, the target water quality in the mid-basin is exceeded in over 60% of cases. The cumulative rainfall is set at 28 days as the criteria, with an annual average rainfall of 3%, which is 32.1 mm or less. It has been noted that changes in water quality in rivers occur when there are 14 or more rainless days and the cumulative rainfall over 28 days is 32.1 mm or less in the Gamcheon Mid-basin. Based on the results of this study, it aims to quantify the drought impact and contribute to the development of a drought water quality index for future environmental droughts.

Washoff Characteristics of Nonpoint pollutants in Paved Areas (포장지역내 비점오염물질의 유출특성)

  • Gil, Kyung-Ik;Wee, Seung-Kyung;Lee, Sang-Soo;Park, Moo-Jong
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.779-782
    • /
    • 2008
  • During the dry periods, many types of pollutant are accumulating on the paved surface by vehicle activities and accumulated various pollutants are inflowing to the near watershed areas for the rainfall periods. Also, the metals, toxic chemicals and sediments originated from bridges could be strongly influenced to the watershed areas during the runoff. The result shows that the EMC ranges for 95% confidence intervals in a bridge land use are $10.12\sim128.09mg/L$ for TSS, $6.07\sim21.15mg/L$ for BOD, $2.10\sim6.70mg/L$ for TN and $0.06\sim0.85mg/L$ for TP.

  • PDF

Improvement and Validation of Convective Rainfall Rate Retrieved from Visible and Infrared Image Bands of the COMS Satellite (COMS 위성의 가시 및 적외 영상 채널로부터 복원된 대류운의 강우강도 향상과 검증)

  • Moon, Yun Seob;Lee, Kangyeol
    • Journal of the Korean earth science society
    • /
    • v.37 no.7
    • /
    • pp.420-433
    • /
    • 2016
  • The purpose of this study is to improve the calibration matrixes of 2-D and 3-D convective rainfall rates (CRR) using the brightness temperature of the infrared $10.8{\mu}m$ channel (IR), the difference of brightness temperatures between infrared $10.8{\mu}m$ and vapor $6.7{\mu}m$ channels (IR-WV), and the normalized reflectance of the visible channel (VIS) from the COMS satellite and rainfall rate from the weather radar for the period of 75 rainy days from April 22, 2011 to October 22, 2011 in Korea. Especially, the rainfall rate data of the weather radar are used to validate the new 2-D and 3-DCRR calibration matrixes suitable for the Korean peninsula for the period of 24 rainy days in 2011. The 2D and 3D calibration matrixes provide the basic and maximum CRR values ($mm\;h^{-1}$) by multiplying the rain probability matrix, which is calculated by using the number of rainy and no-rainy pixels with associated 2-D (IR, IR-WV) and 3-D (IR, IR-WV, VIS) matrixes, by the mean and maximum rainfall rate matrixes, respectively, which is calculated by dividing the accumulated rainfall rate by the number of rainy pixels and by the product of the maximum rain rate for the calibration period by the number of rain occurrences. Finally, new 2-D and 3-D CRR calibration matrixes are obtained experimentally from the regression analysis of both basic and maximum rainfall rate matrixes. As a result, an area of rainfall rate more than 10 mm/h is magnified in the new ones as well as CRR is shown in lower class ranges in matrixes between IR brightness temperature and IR-WV brightness temperature difference than the existing ones. Accuracy and categorical statistics are computed for the data of CRR events occurred during the given period. The mean error (ME), mean absolute error (MAE), and root mean squire error (RMSE) in new 2-D and 3-D CRR calibrations led to smaller than in the existing ones, where false alarm ratio had decreased, probability of detection had increased a bit, and critical success index scores had improved. To take into account the strong rainfall rate in the weather events such as thunderstorms and typhoon, a moisture correction factor is corrected. This factor is defined as the product of the total precipitable waterby the relative humidity (PW RH), a mean value between surface and 500 hPa level, obtained from a numerical model or the COMS retrieval data. In this study, when the IR cloud top brightness temperature is lower than 210 K and the relative humidity is greater than 40%, the moisture correction factor is empirically scaled from 1.0 to 2.0 basing on PW RH values. Consequently, in applying to this factor in new 2D and 2D CRR calibrations, the ME, MAE, and RMSE are smaller than the new ones.

An Empirical Model for Forecasting Alternaria Leaf Spot in Apple (사과 점무늬낙엽병(斑點落葉病)예찰을 위한 한 경험적 모델)

  • Kim, Choong-Hoe;Cho, Won-Dae;Kim, Seung-Chul
    • Korean journal of applied entomology
    • /
    • v.25 no.4 s.69
    • /
    • pp.221-228
    • /
    • 1986
  • An empirical model to predict initial disease occurrence and subsequent progress of Alternaria leaf spot was constructed based on the modified degree day temperature and frequency of rainfall in three years field experiments. Climatic factors were analized 10-day bases, beginning April 20 to the end of August, and were used as variables for model construction. Cumulative degree portion (CDP) that is over $10^{\circ}C$ in the daily average temperature was used as a parameter to determine the relationship between temperature and initial disease occurrence. Around one hundred and sixty of CDP was needed to initiate disease incidence. This value was considered as temperature threshhold. After reaching 160 CDP, time of initial occurrence was determined by frequency of rainfall. At least four times of rainfall were necessary to be accumulated for initial occurrence of the disease after passing temperature threshhold. Disease progress after initial incidence generally followed the pattern of frequency of rainfall accumulated in those periods. Apparent infection rate (r) in the general differential equation dx/dt=xr(1-x) for individual epidemics when x is disease proportion and t is time, was a linear function of accumulation rate of rainfall frequency (Rc) and was able to be directly estimated based on the equation r=1.06Rc-0.11($R^2=0.993$). Disease severity (x) after t time could be predicted using exponential equation $[x/(1-x)]=[x_0/(1-x)]e^{(b_0+b_1R_c)t}$ derived from the differential equation, when $x_0$ is initial disease, $b_0\;and\;b_1$ are constants. There was a significant linear relationship between disease progress and cumulative number of air-borne conidia of Alternaria mali. When the cumulative number of air-borne conidia was used as an independent variable to predict disease severity, accuracy of prediction was poor with $R^2=0.3328$.

  • PDF

Relationship between Yearly Fruit Growth and Climatic Factors in 'Niitaka' Pear (배 '신고'의 연차간 과실 생장과 기상 요인과의 상관성)

  • Han, Jeom Hwa;Son, In Chang;Choi, In Myeong;Kim, Seung Heui;Cho, Jung Gun;Yun, Seok Kyu;Kim, Ho Cheol;Kim, Tae-Choon
    • Horticultural Science & Technology
    • /
    • v.31 no.1
    • /
    • pp.8-13
    • /
    • 2013
  • This research was conducted to investigate the effect of climatic factors on fruit growth in 'Niitaka' pear (Pyrus pyrifolia). For ten years from 2000 to 2010, average full bloom date was April 19th and standard deviation was 4.2 days. Average fruit diameter 160 days after full bloom (DAFB) was 102.4 mm and standard deviation was 7.5 mm. Variance coefficients among climatic factors were higher in rainfall amount and sunshine hours than temperature. Only sunshine hours of climatic factors accumulated during the 160 DAFB had significant positive relationship ($r=0.68^*$) with fruit diameter 160 DAFB. Between full bloom date and fruit diameter 160 DAFB had no significant relationship. Fruit growth in 2004, as continuous rain fall and short sunshine hours, showed opposite pattern compared to that in 2009. Therefore, fruit growth of 'Niitaka' pear was more influenced by the accumulated sunshine hours than accumulated temperature.