• Title/Summary/Keyword: Acceptor concentration

Search Result 129, Processing Time 0.028 seconds

Li-doped p-type ZnS Grown by Molecular Beam Epitaxy

  • Lee Sang-Tae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.313-318
    • /
    • 2005
  • Li-doped ZnS layers were grown by molecular beam epitaxy. It was found that relatively low growth temperature is suitable for effective incorporation of Li acceptors. The layers grown under optimized conditions exhibited photoluminescence spectra dominated by neutral-acceptor-bound excitons. Such layers also showed electrically p-type behavior in capacitance-voltage characteristics. The net acceptor concentration is estimated to be approximately $3{\times}10^{15}\;cm^{-3}$.

The Mg Solid Solution far the P-type Activation of GaN Thin Films Grown by Metal-Organic Chemical Vapor Deposition

  • Kim, KeungJoo;Chung, SangJo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.4
    • /
    • pp.24-29
    • /
    • 2001
  • GaN films were grown for various Mg doping concentrations in metal-organic chemical vapor deposition. Below the Mg concentration of 10$^{19}$ ㎤, the thermally annealed sample shows the compensated phase to n-type GaN in Hall measurement. In the MB concentration of 4$\times$10$^{19}$ ㎤ corresponding to the hole carrier concentration of 2.6$\times$1$^{19}$ ㎤ there exists a photoluminescence center of the donor and the acceptor pair transition of the 3.28-eV band. This center is correlated with the defects for a shallow donor of the $V_{Ga}$ and for an acceptor of $Mg_{Ga}$ . The acceptor level shows the binding energy of 0.2-0.25 eV, which was observed by the photon energy of the photocurrent signal of 3.02-3.31 eV. Above the Mg concentration of 4$\times$10$^{19}$ ㎤, both the Mg doping level and Mg concentration were saturated and there Is a photoluminescence center of a deep donor and an acceptor pair transition of the 2.76-eV blue band.

  • PDF

Effect of Electron Acceptor on Anaerobic Toluene Biodegradation in Rice Field and Tidal Mud Flat (논과 갯벌에서 톨루엔의 혐기성 생분해에 미치는 전자수용체의 영향)

  • 조경숙
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.2
    • /
    • pp.197-200
    • /
    • 2003
  • In oil-contaminated environments, anaerobic biodegradation of toluene depended on the concentration and distribution of terminal electron acceptor as well as the physicochemical properties such as DO concentration, redox potential and pH. This study showed the anaerobic biodegradation of toluene in two different soils by using nitrate reduction, ferric iron reduction, sulfate reduction and methanogensis. Toluene degradation rates in the soil samples taken from rice filed and tidal mud flat by nitrate reduction were higher than those by other processes. Tho soil samples from the two fields were enriched for 130 days by providing toluene as a sole carbon source and nitrate or sulfate as a terminal electron acceptor. The toluene degradation rates in the enriched denitrifying consortia obtained from the rice field and tidal mud flat soil were 310.7 and 200.6 $\mu$mol$ L^{-1}$ / $d^{-1}$, respectively. The toluene (legradation rates in the enriched sulfate-reducing consortia from the fields ranged fi-om 149.1 to 86.1$\mu$mol $L^{-1}$ / $d^{-1}$ .

Study for Energy Transfer from Rhodamine 6G to Malachite Green Using Time Correlated Single Photon Counting Method (시간상관 단일광자 계수법에의한 Rhodamine 6G에서 Malachite Green으로의 에너지 전달 연구)

  • Kim, Hyun-Soo;Eom, Hyo-Soon;Choi, Gyu-Kwan;Jeong, Hong-Sik;Kim, Ung
    • Korean Journal of Optics and Photonics
    • /
    • v.2 no.4
    • /
    • pp.203-208
    • /
    • 1991
  • We investigated the nonradiative energy transfer process from Rhodamine 6G to Malachite Green in ethylen glycol solvent using time correlated single photon counting system equipped with a modelocked Ar ' laser. The reduced concentration and critical transfer distance for various acceptor concentration were obtained by using a full-fitting analysis of the fluorescence decay curves. We found that Huber model is more suitable than Forster model and the influence of energy migration through the dipole-dipole interaction becomes more significant for the low acceptor concentrations relative to the donor concentration($5\times 10^4$mol/l).

  • PDF

Acarbose Effect for Dexran Synthesis, Acceptor and Disproportionation Reactions of Leuconostoc mesenteroides B-512FMCM Dextransucrase

  • Kim, Do-Man;Park, Kwan-Hwa;Robyt, John F.
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.3
    • /
    • pp.287-290
    • /
    • 1998
  • Acarbose effectively inhibited the synthesis of dextran, and the inhibition pattern was a noncompetitive type with a $K_i$ value of 1.35 mM. It also inhibited the disproportionation reaction of dextransucrase with isomaltotriose and decreased the efficiency of the maltose acceptor reaction. Increased concentration of dextransucrase or maltose in reaction digests, however, decreased the degree of inhibition by acarbose.

  • PDF

Sythesis of Highly Branched Isomaltodextrin by Acceptor Reaction using Dextransucrases from L. mesenteroides B-742CB and B-512FMCM (Leuconostoc mesenteroides B-742CB와 B-512FMCM Dextransucrase의 수용체 반응을 이용한 고분지 Isomaltodextrin의 생산)

  • 김문수;이선옥;류화자;강희경;유선균;장석상;김도원;김도만;김성혁
    • KSBB Journal
    • /
    • v.16 no.2
    • /
    • pp.200-206
    • /
    • 2001
  • In this study we tried to optimize the enzyme reaction conditions for the synthesis of highly branched isomaltodextrin (Mw > 2.5 kDa) using two dextransucrases from L. mesenteroides B-742CB and B-512FMCM that are dextransucrase constitutive mutants. As the concentration of sucrose or the ratio of maltose to sucrose increased, the amount of dextran decreased and the number and the amount of acceptor-products (of sucrose or maltose) increased. With high sucrose concentration (over 34%), there was more branched isomaltodextrin (as acceptor products) than dextran. When the ratio of sucrose to maltose was 2.5, there produced 86.7% of isomaltodextrin were produced. The Mw of dextrans, however, was over 2${\times}$10(sup)6 and there was no significant amounts of branched clinical dextran or high molecular weight oligosaccharides. With the combined activities of B-742CB dextransucrase and B-512FMCM dextransucrase we could synthesize high molecular weight branched isomaltodextrin (Mw>2.5 kDa). The high molecular weight dextran was composed of high branches as B-742CB dextran.

  • PDF

Preliminary Study of Bioremediation in Diesel Contaminated Soil (디젤 오염토양의 생물학적 복원에 관한 기초연구)

  • 김선영;권수열;이상훈
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.167-170
    • /
    • 2000
  • The purpose of study is to evaluate the effects of physical parameters on diesel biodegradation in diesel contaminated soil. The parameters applied are concentration, temperature, moisture contents, electron acceptor(O$_2$). The results of this study showed that diesel were degraded faster at high temperature and moisture contents than at low temperature and moisture content. However concentration effect study indicates that diesel were more faster degraded at low concentration than at high concentration. The results of electron acceptor test showed concentration of oxygen did not affect the biodegradation rate of diesel in oxygen condition(10, 20%) of this study.

  • PDF

Humic Substances Act as Electron Acceptor and Redox Mediator for Microbial Dissimilatory Azoreduction by Shewanella decolorationis S12

  • Hong, Yi-Guo;Guo, Jun;Xu, Zhi-Cheng;Xu, Mei-Ying;Sun, Guo-Ping
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.428-437
    • /
    • 2007
  • The potential for humic substances to serve as terminal electron acceptors in microbial respiration and the effects of humic substances on microbial azoreduction were investigated. The dissimilatory azoreducing microorganism Shewanella decolorationis S12 was able to conserve energy to support growth from electron transport to humics coupled to the oxidation of various organic substances or $H_2$. Batch experiments suggested that when the concentration of anthraquinone-2-sulfonate (AQS), a humics analog, was lower than 3 mmol/l, azoreduction of strain S12 was accelerated under anaerobic condition. However, there was obvious inhibition to azoreduction when the concentration of the AQS was higher than 5 mmol/l. Another humics analog, anthraquinone-2-sulfonate (AQDS), could still prominently accelerate azoreduction, even when the concentration was up to 12 mmol/l, but the rate of acceleration gradually decreased with the increasing concentration of the AQDS. Toxic experiments revealed that AQS can inhibit growth of strain S12 if the concentration past a critical one, but AQDS had no effect on the metabolism and growth of strain S12 although the concentration was up to 20 mmol/l. These results demonstrated that a low concentration of humic substances not only could serve as the terminal electron acceptors for conserving energy for growth, but also act as redox mediator shuttling electrons for the anaerobic azoreduction by S. decolorationis S12. However, a high concentration of humic substances could inhibit the bacterial azoreduction, resulting on the one hand from the toxic effect on cell metabolism and growth, and on the other hand from competion with azo dyes for electrons as electron acceptor.

Enzymatic Synthesis of New Oligosaccharides Using Glucansucrases. (Glucansucrases를 이용한 새로운 올리고당의 합성)

  • ;;;;;John F. Robyt
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.2
    • /
    • pp.179-186
    • /
    • 1998
  • Dextransucrase hyper-producing Leuconostoc mesenteroides B-512FMCM and dextransucrase constitutive mutants B-742CB and B-1355C catalyzed the transfer of glucose from sucrose to other carbohydrates which were present or were added to the reaction digests. When the acceptor was a maltose, gentiobiose, lactose or raffinose, there was produced a series of oligosaccharide acceptor products or single product based on the kinds of enzymes and reaction conditions. To obtain the quantitative information about the yield and the distribution of acceptor products and dextran two experimental parameters were studied: a) the ratio of acceptor to sucrose and b) the amount of enzyme at constant carbohydrate concentration (100 mM). As the amount of enzyme increased, the synthesis of acceptor products (of maltose or gentiobiose) increased, and the formation of dextran decreased. As the ratio of acceptor to sucrose increased, the amount of dextran and the number of acceptor-products decreased and the amount of acceptor-products increased. When maltose or gentiobiose was an acceptor, the glucose from sucrose was transferred to the C-6 hydroxyl group of the nonreducing-end glucose residue of accepters to give a homologous series of isomaltosyl dextrins. In case of lactose or raffinose, there was produced only one acceptor product from B-512FMCM dextransucrase reaction. In the lactose acceptor reaction, the glucose from sucrose was transferred to the C-2 hydroxyl of the reducing end glucose residue of lactose. To get a series of oligosaccharides from lactose or raffinose acceptor reaction we used B-742CB dextransucrase or B-1355C alternansucrase with 500 mM sucrose in reaction digest.

  • PDF

Extraction of Short Peptide Using Supported Liquid Membranes (Supported Liquid Membrane을 이용한 Short Peptide의 추출)

  • Lee, Jae-Heung;Park, Ki-Moon
    • Food Science of Animal Resources
    • /
    • v.25 no.3
    • /
    • pp.340-343
    • /
    • 2005
  • The objective of this work was to study separation of short peptide (glycine-tyrosine) by using supported liquid membranes (SLMs) containing Aliquat as a cationic carrier, In the present investigation, the influence of pH of donor phase, concentrations of carrier and salt concentrations of acceptor phase on separation flux rate were investigated. Below pH 7.0 the flux rate was not affected by NaCl concentration or carrier concentration. However, the rate was increased significantly above pH 7.0. The rate with Hossain's SLM(H-SLM) containing $20\%$ Aliquat was about 3-fold higher with pH 9.0 at 0.25 M NaCl and 10-fold higher with pH 8.0 at 1.0 M NaCl than that with Duggan's SLM(D-SLM) containing $8\%$ Aliquat respectively. Furthermore, the rate with H-SLM was 10-fold higher at 1.0 M NaCl than the rate with 0.25 M NaCl, In conclusion, it would appear that the rate of separation was facilitated by using high salt concentrations together with high carrier concentrations above pH 7.0.