• 제목/요약/키워드: Acceleration time

검색결과 2,044건 처리시간 0.027초

Retrieving the Time History of Displacement from Measured Acceleration Signal

  • Han, Sangbo
    • Journal of Mechanical Science and Technology
    • /
    • 제17권2호
    • /
    • pp.197-206
    • /
    • 2003
  • It is intended to retrieve the time history of displacement from measured acceleration signal. In this study, the word retrieving means reconstructing the time history of original displacement signal from already measured acceleration signal not just extracting various information using relevant signal processing techniques. Unlike extracting required information from the signal, there are not many options to apply to retrieve the time history of displacement signal, once the acceleration signal is measured and recorded with given sampling rate. There are two methods, in general, to convert measured acceleration signal into displacement signal. One is directly integrating the acceleration signal in time domain. The other is dividing the Fourier transformed acceleration signal by the scale factor of - $\omega$$^2$and taking the inverse Fourier transform of it. It turned out both the methods produced a significant amount of errors depending on the sampling resolution in time and frequency domain when digitizing the acceleration signals. A simple and effective way to convert the time history of acceleration signal into the time history of displacement signal without significant errors is studied here with the analysis on the errors involved in the conversion process.

Performance of water-jet pump under acceleration

  • Wu, Xian-Fang;Li, Ming-Hui;Liu, Hou-Lin;Tan, Ming-Gao;Lu, You-Dong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.794-803
    • /
    • 2021
  • The instantaneous acceleration affects the performance of the water-jet pump obviously. Here, based on the user-defined function, the method to simulate the inner flow in water-jet pumps under acceleration conditions was established. The effects of two different acceleration modes (linear acceleration and exponential acceleration) and three kinds of different acceleration time (0.5s, 1s and 2s) on the performance of the water-jet pump were analyzed. The results show that the thrust and the pressure pulsation under exponential acceleration are lower than that under linear acceleration at the same time; the vapor volume fraction in the impeller under linear acceleration is 27.3% higher than that under exponential acceleration. As the acceleration time increases, the thrust gradually increases and the pressure pulsation amplitude at the impeller inlet and outlet gradually decreases, while the law of pressure pulsation is the opposite at the diffuser outlet. The main frequency of pressure pulsation at the impeller outlet is different under different acceleration time. The research results can provide some reference for the optimal design of water-jet pumps.

TRANSIENT PERFORMANCE OF AN SI ENGINE BY TRANSIENT RESPONSE SPECIFICATIONS

  • Kwark, J.H.;Jeon, C.H.;Chang, Y.J.
    • International Journal of Automotive Technology
    • /
    • 제4권3호
    • /
    • pp.109-117
    • /
    • 2003
  • The analysis and evaluation of the transient performance by the transient response specifications under various acceleration speeds and types based on driver's typical acceleration habit are implemented by the experimental study to provide the appropriate direction for the transient control in a gasoline engine. The concept of the transient response specifications which consist of delay time, rising time, maximum overshoot and settling time, and the analysis method using them are introduced to evaluate the characteristics of the transient performance quantitatively. Furthermore four acceleration speeds and four acceleration types are set respectively to realize the various transient states which are similar to the real drive. Several performance parameters in terms of engine speed, manifold absolute pressure, fuel injection duration and air excess ratio are measured simultaneously during the various acceleration using a throttle actuator controlled by a PC. The transient response specifications characterized well the transient performance for the various acceleration speed and types quantitatively. Delay and rising time with increment of the acceleration speed became shorter, but settling time did longer. Intensified acceleration type appeared to be the most economical in view of fuel consumption, and linear acceleration type was found to have the least harmful emission concentration.

Effect of design spectral shape on inelastic response of RC frames subjected to spectrum matched ground motions

  • Ucar, Taner;Merter, Onur
    • Structural Engineering and Mechanics
    • /
    • 제69권3호
    • /
    • pp.293-306
    • /
    • 2019
  • In current seismic design codes, various elastic design acceleration spectra are defined considering different seismological and soil characteristics and are widely used tool for calculation of seismic loads acting on structures. Response spectrum analyses directly use the elastic design acceleration spectra whereas time history analyses use acceleration records of earthquakes whose acceleration spectra fit the design spectra of seismic codes. Due to the fact that obtaining coherent structural response quantities with the seismic design code considerations is a desired circumstance in dynamic analyses, the response spectra of earthquake records used in time history analyses had better fit to the design acceleration spectra of seismic codes. This paper evaluates structural response distributions of multi-story reinforced concrete frames obtained from nonlinear time history analyses which are performed by using the scaled earthquake records compatible with various elastic design spectra. Time domain scaling procedure is used while processing the response spectrum of real accelerograms to fit the design acceleration spectra. The elastic acceleration design spectra of Turkish Seismic Design Code 2007, Uniform Building Code 1997 and Eurocode 8 are considered as target spectra in the scaling procedure. Soil classes in different seismic codes are appropriately matched up with each other according to $V_{S30}$ values. The maximum roof displacements and the total base shears of considered frame structures are determined from nonlinear time history analyses using the scaled earthquake records and the results are presented by graphs and tables. Coherent structural response quantities reflecting the influence of elastic design spectra of various seismic codes are obtained.

운전자의 가속타입이 MPI 가솔린엔진의 과도성능에 미치는 영향 (Effect on Transient Performance of Driver's Acceleration Type in MPI Gasoline Engine)

  • 곽지현;전충환;장영준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권1호
    • /
    • pp.75-81
    • /
    • 2000
  • To provide the appropriate direction for development of transient control in a gasoline engine, transient performance analysis and evalution under four accelerating types based on typical driver's acceleration type were implemented by experimental study. In order to evaluate the characteristics of transient performance quanititatively, the concept and method by transient response specifications were introduced. Several performance parameters in terms of engine speed(RPM), manifold absolute pressure(MAP), fuel injection duration($\DeltatI_{nj}$) and air excess ratio($\lambda$) were emasured simultaneously during the four types of the throttle valve opening with the step motor controlled by PC. The result showed that transient response specifications in terms of delay time, rising time and settling time characterized the transient performance for four acceleration types quantitatively. Intensified acceleration type was most economical and linear acceleration type revealed the best emission performance.

  • PDF

A STUDY ON THE TRIBOLOGICAL CHARACTERISTICS OF FeCrSi/A366.0 ALLOY COMPOSITES

  • Song, Tae-Hoon;Choi, Yong-Bum;Park, Sung-Ho;Huh, Sun-Chul;Park, Won-Jo
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.262-267
    • /
    • 2007
  • In this paper, we study about wear properties for the metal matrix composites fabricated by low pressure infiltration process. Metal fiber preform reinforced aluminum alloy composite were fabricated by low pressure casting process under 0.4MPa. Infiltration condition was changed the pressure infiltration time of 1 s, 2 s and 5 s under a constant pressure of 0.4MPa. The molten alloy completely infiltrated the FeCrSi metal perform regardless of the increase in the pressure acceleration time. However, the infiltration time at the pressure acceleration time of 1s was shorter than at the pressure acceleration time of 2s or 5s. The FeCrSi/A366.0 composite was investigated the porosity. The porosity is reducing as the pressure acceleration time compared with the pressure acceleration time of 2s and 5s. The FeCrSi/A366.0 composites were investigated the wear resistance. FeCrSi/A366.0 composite at pressure acceleration time of 1s has excellent wear resistance.

  • PDF

ACCELERATION OF COSMIC RAYS AT COSMIC SHOCKS

  • KANG HYESUNG
    • 천문학회지
    • /
    • 제36권1호
    • /
    • pp.1-12
    • /
    • 2003
  • Nonthermal particles can be produced due to incomplete thermalization at collisionless shocks and further accelerated to very high energies via diffusive shock acceleration. In a previous study we explored the cosmic ray (CR) acceleration at cosmic shocks through numerical simulations of CR modified, quasi-parallel shocks in 1D plane-parallel geometry with the physical parameters relevant for the shocks emerging in the large scale structure formation of the universe (Kang & Jones 2002). Specifically we considered pancake shocks driven by accretion flows with $U_o = 1500 km\;s^{-l}$ and the preshock gas temperature of $T_o = 10^4 - 10^8K$. In order to consider the CR acceleration at shocks with a broader range of physical properties, in this contribution we present additional simulations with accretion flows with $U_o = 75 - 1500 km\;s^{-l}$ and $T_o = 10^4K$. We also compare the new simulation results with those reported in the previous study. For a given Mach number, shocks with higher speeds accelerate CRs faster with a greater number of particles, since the acceleration time scale is $t_{acc}\;{\propto}\;U_o^{-2}$. However, two shocks with a same Mach number but with different shock speeds evolve qualitatively similarly when the results are presented in terms of diffusion length and time scales. Therefore, the time asymptotic value for the fraction of shock kinetic energy transferred to CRs is mainly controlled by shock Mach number rather than shock speed. Although the CR acceleration efficiency depends weakly on a well-constrained injection parameter, $\epsilon$, and on shock speed for low shock Mach numbers, the dependence disappears for high shock Mach numbers. We present the 'CR energy ratio', ${\phi}(M_s)$, for a wide range of shock parameters and for $\epsilon$ = 0.2 - 0.3 at terminal time of our simulations. We suggest that these values can be considered as time-asymptotic values for the CR acceleration efficiency, since the time-dependent evolution of CR modified shocks has become approximately self-similar before the terminal time.

A Study on Real-Time Slope Monitoring System using 3-axis Acceleration

  • Yoo, So-Wol;Bae, Sang-Hyun
    • 통합자연과학논문집
    • /
    • 제10권4호
    • /
    • pp.232-239
    • /
    • 2017
  • The researcher set up multiple sensor units on the road slope such as national highway and highway where there is a possibility of loss, and using the acceleration sensor built into the sensor unit the researcher will sense whether the inclination of the road slope occur in real time, and Based on the sensed data, the researcher tries to implement a system that detects collapse of road slope and dangerous situation. In the experiment of measuring the error between the actual measurement time and the judgment time of the monitoring system when judging the warning of the sensor and falling rock detection by using the acceleration sensor, the error between measurement time and the judgment time at the sensor warning was 0.34 seconds on average, and an error between measurement time and judgment time at falling rock detection was 0.21 seconds on average. The error is relatively small, the accuracy is high, and thus the change of the slope can be clearly judged.

Compensation techniques for experimental errors in real-time hybrid simulation using shake tables

  • Nakata, Narutoshi;Stehman, Matthew
    • Smart Structures and Systems
    • /
    • 제14권6호
    • /
    • pp.1055-1079
    • /
    • 2014
  • Substructure shake table testing is a class of real-time hybrid simulation (RTHS). It combines shake table tests of substructures with real-time computational simulation of the remaining part of the structure to assess dynamic response of the entire structure. Unlike in the conventional hybrid simulation, substructure shake table testing imposes acceleration compatibilities at substructure boundaries. However, acceleration tracking of shake tables is extremely challenging, and it is not possible to produce perfect acceleration tracking without time delay. If responses of the experimental substructure have high correlation with ground accelerations, response errors are inevitably induced by the erroneous input acceleration. Feeding the erroneous responses into the RTHS procedure will deteriorate the simulation results. This study presents a set of techniques to enable reliable substructure shake table testing. The developed techniques include compensation techniques for errors induced by imperfect input acceleration of shake tables, model-based actuator delay compensation with state observer, and force correction to eliminate process and measurement noises. These techniques are experimentally investigated through RTHS using a uni-axial shake table and three-story steel frame structure at the Johns Hopkins University. The simulation results showed that substructure shake table testing with the developed compensation techniques provides an accurate and reliable means to simulate the dynamic responses of the entire structure under earthquake excitations.

지진하중에 의해 발생된 가속도를 이용한 시간창 기법에 의한 구조물의 손상탐지 (Structural Damage Detection Using Time Windowing Technique from Measured Acceleration during Earthquake)

  • 박승근;이해성
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2005년도 학술발표회 논문집
    • /
    • pp.529-535
    • /
    • 2005
  • This paper presents a system identification (SI) scheme in time domain using measured acceleration data. The error function is defined as the time integral of the least squared errors between the measured acceleration and the calculated acceleration by a mathematical model. Damping parameters as well as stiffness properties of a structure are considered as system parameters. The structural damping is modeled by the Rayleigh damping. A new regularization function defined by the L1-norm of the first derivative of system parameters with respect to time is proposed to alleviate the ill-posed characteristics of inverse problems and to accommodate discontinuities of system parameters in time. The time window concept is proposed to trace variation of system parameters in time. Numerical simulation study is performed through a two-span continuous truss subject to ground motion.

  • PDF