• Title/Summary/Keyword: Accelerated failure time model

Search Result 81, Processing Time 0.022 seconds

Gene-Gene Interaction Analysis for the Accelerated Failure Time Model Using a Unified Model-Based Multifactor Dimensionality Reduction Method

  • Lee, Seungyeoun;Son, Donghee;Yu, Wenbao;Park, Taesung
    • Genomics & Informatics
    • /
    • v.14 no.4
    • /
    • pp.166-172
    • /
    • 2016
  • Although a large number of genetic variants have been identified to be associated with common diseases through genome-wide association studies, there still exits limitations in explaining the missing heritability. One approach to solving this missing heritability problem is to investigate gene-gene interactions, rather than a single-locus approach. For gene-gene interaction analysis, the multifactor dimensionality reduction (MDR) method has been widely applied, since the constructive induction algorithm of MDR efficiently reduces high-order dimensions into one dimension by classifying multi-level genotypes into high- and low-risk groups. The MDR method has been extended to various phenotypes and has been improved to provide a significance test for gene-gene interactions. In this paper, we propose a simple method, called accelerated failure time (AFT) UM-MDR, in which the idea of a unified model-based MDR is extended to the survival phenotype by incorporating AFT-MDR into the classification step. The proposed AFT UM-MDR method is compared with AFT-MDR through simulation studies, and a short discussion is given.

A Study of Two-Mode Failure Model for Crystalline Si Photovoltaic Module (실리콘 태양전지 모듈의 two-mode failure 모델의 연구)

  • Choi, Ki Young;Oh, Won Wook;Kang, Byung Jun;Kim, Young Do;Tark, Sung Ju;Kim, Donghwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.62.2-62.2
    • /
    • 2011
  • To guarantee 20-25 years to the lifetime of the PV modules without failure, reliability test of the module is very important. Field-aged test of the outdoor environment is required. However, due to time constraints, accelerated testing is required to predict the lifetime of PV modules and find causes of failure. Failure is caused by many complex phenomena. In this study, we experimented two accelerated tests about corrosion and fatigue, respectively. First, temperature cycling test for fatigue were tested and Coffin-Manson equation was analyzed. Second, damp heat test for corrosion were tested and Eyring equation were analyzed. Finally, using two-mode failure model, we suggest a new lifetime model that analyze the phenomenon by combining two kinds of data.

  • PDF

No-Failure Accelerated Life Test of Flap Actuating System using Weibull Distribution (와이블 분포를 이용한 플랩구동장치의 무고장 가속수명시험)

  • Cho, Hyunjun;Lee, Inho;Kim, Sangbeom;Park, Sangjoon;Yang, Myungseok
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.1
    • /
    • pp.51-58
    • /
    • 2016
  • In this paper, we present some results on No-failure accelerated life test of aerial vehicle for reliability demonstration. The design of general accelerated life test consists of the three phases: 1) Estimating normal life test time of a single product from Weibull distribution model; 2) Determining the acceleration factor (AF) by utilizing the relation between the life of mechanical components and the applied torque; 3) Calculating the accelerated life test time, which comes from dividing the estimated normal life test time into AF. Then, we applied the calculated life test time to the real reliability test of the flap actuating system, while considering the requirement specification for mechanical components and operating environment of the actuation system. Real experimental processes and results are presented to validate the theory.

Penalized variable selection for accelerated failure time models

  • Park, Eunyoung;Ha, Il Do
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.6
    • /
    • pp.591-604
    • /
    • 2018
  • The accelerated failure time (AFT) model is a linear model under the log-transformation of survival time that has been introduced as a useful alternative to the proportional hazards (PH) model. In this paper we propose variable-selection procedures of fixed effects in a parametric AFT model using penalized likelihood approaches. We use three popular penalty functions, least absolute shrinkage and selection operator (LASSO), adaptive LASSO and smoothly clipped absolute deviation (SCAD). With these procedures we can select important variables and estimate the fixed effects at the same time. The performance of the proposed method is evaluated using simulation studies, including the investigation of impact of misspecifying the assumed distribution. The proposed method is illustrated with a primary biliary cirrhosis (PBC) data set.

A GEE approach for the semiparametric accelerated lifetime model with multivariate interval-censored data

  • Maru Kim;Sangbum Choi
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.4
    • /
    • pp.389-402
    • /
    • 2023
  • Multivariate or clustered failure time data often occur in many medical, epidemiological, and socio-economic studies when survival data are collected from several research centers. If the data are periodically observed as in a longitudinal study, survival times are often subject to various types of interval-censoring, creating multivariate interval-censored data. Then, the event times of interest may be correlated among individuals who come from the same cluster. In this article, we propose a unified linear regression method for analyzing multivariate interval-censored data. We consider a semiparametric multivariate accelerated failure time model as a statistical analysis tool and develop a generalized Buckley-James method to make inferences by imputing interval-censored observations with their conditional mean values. Since the study population consists of several heterogeneous clusters, where the subjects in the same cluster may be related, we propose a generalized estimating equations approach to accommodate potential dependence in clusters. Our simulation results confirm that the proposed estimator is robust to misspecification of working covariance matrix and statistical efficiency can increase when the working covariance structure is close to the truth. The proposed method is applied to the dataset from a diabetic retinopathy study.

Accelerated Life Test for Door Switch of Refrigerator (냉장고 도어스위치의 가속수명시험)

  • Ryu Dong Su;Kim Sang Uk;Jang Young Kee;Moon Chul Hui
    • Journal of Applied Reliability
    • /
    • v.5 no.2
    • /
    • pp.273-287
    • /
    • 2005
  • Accelerated life test models and procedure are developed to assess the reliability of Refrigerator door switch. The main function of door switch is to operate bulb lamp and fan motor in the refrigerating room. The accelerated life test method and test equipments are developed using the relationship between stresses and life characteristics of the products. Using the developed accelerated life test method, the parameters of the ALT model and life time distribution are estimated and the reliability of the Door S/W at use condition if assessed. The proposed accelerated life test method and procedure may be extended and applied to testing similar kinds of products to reduce test time and costs of the tests remarkably.

  • PDF

Prediction Model on Delivery Time in Display FAB Using Survival Analysis (생존분석을 이용한 디스플레이 FAB의 반송시간 예측모형)

  • Han, Paul;Baek, Jun Geol
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.40 no.3
    • /
    • pp.283-290
    • /
    • 2014
  • In the flat panel display industry, to meet production target quantities and the deadline of production, the scheduler and dispatching systems are major production management systems which control the order of facility production and the distribution of WIP (Work In Process). Especially the delivery time is a key factor of the dispatching system for the time when a lot can be supplied to the facility. In this paper, we use survival analysis methods to identify main factors of the delivery time and to build the delivery time forecasting model. To select important explanatory variables, the cox proportional hazard model is used to. To make a prediction model, the accelerated failure time (AFT) model was used. Performance comparisons were conducted with two other models, which are the technical statistics model based on transfer history and the linear regression model using same explanatory variables with AFT model. As a result, the mean square error (MSE) criteria, the AFT model decreased by 33.8% compared to the statistics prediction model, decreased by 5.3% compared to the linear regression model. This survival analysis approach is applicable to implementing the delivery time estimator in display manufacturing. And it can contribute to improve the productivity and reliability of production management system.

Accelerated Life Test Model for Life Prediction of Piston Assemblies in Hydraulic Pump and Motor (유압펌프 및 모터 피스톤 조립체의 수명예측을 위한 가속실험 모델)

  • Lee Y.B.;Kim H.E.;Yoo Y.C.;Park J.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.2 no.4
    • /
    • pp.14-22
    • /
    • 2005
  • The safety factor of hydraulic piston pumps & motors due to high pressurization, high speedization and low weight/volume realization to enhance the output density shows a tendency to decrease. Therefore more effective test methods are necessary to predict the exact life. The failure of hydraulic pumps & motors operating in high pressure and high speed mainly occurs in piston-shoe assemblies, and the major failure mode is wearout of the shoe surface. The sensitive parameters in the endurance life test are speed, pressure and temperature, and the failure production increases in proportion to the operating time. In this research, the authors propose the combined accelerated life test model using the analysis method of the combined accelerated life test results of piston-shoe assemblies by applying simultaneously high speed, high pressure and high temperature in accordance with variation of speed, pressure and temperature to reduce the life test time.

  • PDF

A Study on the Accelerated Life Evaluation of Drive Shaft for Independent Suspension type AWD Vehicle (독립현가형 AWD 차량의 구동축 가속 수명 평가에 관한 연구)

  • Kim, Do-Sik
    • Journal of Applied Reliability
    • /
    • v.11 no.4
    • /
    • pp.343-356
    • /
    • 2011
  • This paper proposes an accelerated life evaluation of drive shaft. The life test of drive shaft for independent suspension type AWD vehicle should be performed by use of the least test sample because many number of samples can't be used for the test because of its mass capacity and high price. We calculated the no failure test time by application of no failure test concept, and the already performed test data for drive shaft are applied for some kinds of reliability coefficients which are needed for calculation of life test time. And, for analysis of real driving condition of vehicle, the load spectrum is prepared using the needed road condition and vehicle data. The inverse power model is used for accelerated life test. The equivalent torque of load spectrum is achieved by use of Miner's Rule, and then the final accelerating condition is determined by decision of the accelerated test torque. This paper shows that the accelerated life test results corresponds with the target life and the proposed life test method can be very well applied to no failure life test for mass capacity machinery components.

A Study on Accelerated Life Testing Model and Design (헬기용 와이퍼 조립체의 가속모델 및 가속수명시험 설계 연구)

  • Kim, Daeyu;Hur, Jangwook;Jeon, Buil
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.894-903
    • /
    • 2018
  • In the case of helicopters, the development of parts technology is rapidly changing, and the complexity is rapidly increasing. Particularly, the surge of various electric and electronic systems is recognized as a problem that is directly related to the safety of the helicopter. Due to these problems, there is a growing interest in reliability evaluation in the face of the problem of confirming and certifying the reliability of parts in the development stage. In this paper, the analysis of the failure mechanism of the wiper system was carried out, and the priority and importance of each failure mode were checked by using the results, and major stress factors were derived and the corresponding acceleration model was selected. Also, the accelerated lifetime test time was calculated according to the life test time, acceleration status and acceleration level of the steady state by using the selected acceleration model and characteristic values.