Communications for Statistical Applications and Methods https://doi.org/10.29220/CSAM.2018.25.6.591
2018, Vol. 25, No. 6, 591-604 Print ISSN 2287-7843 / Online ISSN 2383-4757

Penalized variable selection for accelerated failure time
models
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Abstract

The accelerated failure time (AFT) model is a linear model under the log-transformation of survival time
that has been introduced as a useful alternative to the proportional hazards (PH) model. In this paper we pro-
pose variable-selection procedures of fixed effects in a parametric AFT model using penalized likelihood ap-
proaches. We use three popular penalty functions, least absolute shrinkage and selection operator (LASSO),
adaptive LASSO and smoothly clipped absolute deviation (SCAD). With these procedures we can select im-
portant variables and estimate the fixed effects at the same time. The performance of the proposed method is
evaluated using simulation studies, including the investigation of impact of misspecifying the assumed distribu-
tion. The proposed method is illustrated with a primary biliary cirrhosis (PBC) data set.
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1. Introduction

In survival analysis, accelerated failure time (AFT) model has been introduced as a useful alternative
to proportional hazards (PH) model (Lawless, 1982). The PH model is modelled by fixed effects
(e.g., regression coefficients) acting multiplicatively on the hazard rate of individual survival time.
However, in the AFT model the fixed effects act linearly on the individual survival time, thus making
the interpretation of the fixed effects easier than in the PH model. AFT model is robust against the
misspecification of the assumed model due to its log-linear transformation (Hutton and Monaghan,
2002; Ha et al., 2002). In this paper, we are interested in the development of a variable-selection
procedure in the AFT model. Recently, variable-selection methods using a penalized likelihood with
penalty functions have been widely studied in various statistical models, such as linear models, gener-
alized linear models (GLMs), and Cox’s (1972) PH models (Tibshirani, 1996; Fan and Li, 2001). The
advantages of these methods are the ability to select important variables and estimates the regression
coefficients of the covariates, simultaneously. Selecting relevant variables from a regression model
with a number of covariates is important in data analysis including survival analysis.

Various penalized variable-selection methods in the semiparametric AFT model with an unspec-
ified distribution have been studied (Huang et al., 2006; Cai et al., 2009; Huang and Ma, 2010; Xu
et al., 2010; Wang and Song, 2011; Zhang et al., 2018). Parametric survival models and their func-
tional forms (e.g., survival function) are simple and they would be useful in survival analysis if the
model assumption is correct or less sensitive against the inference. The fixed effects (i.e., regression
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coefficients) in parametric AFT model with a specified distribution (e.g., lognormal or Weibull) are
relatively robust against the misspecification of the assumed distribution as compared to nuisance pa-
rameters in random error terms (Hutton and Monaghan, 2002; Ha et al., 2002). Thus, we are interested
in studying the behaviors of variable selection of fixed effects under parametric AFT model.

In this paper, we develop variable-selection procedures of fixed effects in parametric AFT model
using a penalized likelihood approach. Here we consider two useful parametric distributions, lognor-
mal and Weibull distributions, for survival analysis. For the variable selection, we use three popular
penalty functions, least absolute shrinkage and selection operator (LASSO) (Tibshirani, 1996), adap-
tive LASSO (ALASSO) (Zou, 2006), and smoothly clipped absolute deviation (SCAD) (Fan and Li,
2001). We also show how to derive the penalized likelihood procedure. The performance of the
proposed method is evaluated using simulation studies. In particular, the simulation shows that the
proposed variable-selection method is somewhat robust against the misspecification of the assumed
model. The proposed method is illustrated with a primary biliary cirrhosis (PBC) (Tibshirani, 1997)
data set which is well known in the literature.

This paper is organized as follows. In Section 2, we briefly review the AFT model, and propose
a penalized variable-selection method using AFT model, including the derivations of the estimation
procedures. In Section 3, the results of simulation studies are presented to evaluate the validity of the
proposed method. The proposed method is illustrated with the PBC data in Section 4. Discussion is
given in Section 5. Finally, technical details are given in the Appendix.

2. Variable selection for accelerated failure time models
2.1. Accelerated failure time model

Let 7; be the survival time (failure time) for each subject (i = 1, ..., n) and let C; be the corresponding
random censoring time. AFT model is to describe a linear relationship between the logarithm of
survival time and covariates as:

log T; = x{ B + €, 2.1)

where x; = (1, x;1,...,x;p-1)" is a covariates vector of the i subject, 8 = (8o, B1, - ..,Bp-1) isapx1
vector of regression coefficients corresponding to x;, and ¢; is a random error.

For the distribution of ¢;, we consider two popular parametric distributions, i.e., normal and ex-
treme value (EV) distributions. If ¢, ~ N(O, 0'3) having the density

[SIE

- €2
fl&) = (2n02) * exp (——) (2.2)

202
T; has the lognormal (LN) distribution with location parameter xiT,B and scale parameter ¥ = 0'3. Ife
follows an EV distribution with scale parameter o~ having the density

f(e) = ot exp {(g) —exp (g)} R 2.3)

T; follows Weibull distribution with scale parameter 1y = exp{—(xl.T,B)Lﬁ} and shape parameter ¥ =
1/o. In particular, the Weibull distribution is a flexible model because of an unique distribution
satisfying both AFT and PH models (Lawless, 1982).

In this paper, if T; in AFT model (2.1) follows LN distribution, we call the model LN AFT model.
If T; follows Weibull distribution, we call it Weibull AFT model. We follow two usual assumptions
under non-informative censoring (Ha et al., 2002; Zhou, 2005; Zhang et al., 2018):
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Assumption 1. Given covariates x;, T;’s and C;’s are conditionally independent and the pairs (T;,
C;)’s are also conditionally independent fori = 1,...,n.

Assumption 2. Given covariates x;, C;’s are conditionally non-informative about T;’s.
Based on these two assumptions, we make inferences as shown below.

2.2. Variable selection procedure

Now, we present how to derive a variable selection procedure using a penalized likelihood. In survival
analysis with random censoring, observable random variables are given by

Y; = min(log T;,logC;) and 6; = I(T; < C)).

Let A(¢) be the hazard function of T;, and let A(¢) = fot A(k)dk be the corresponding cumulative hazard
function. Under Assumptions 1 and 2, the log-likelihood for AFT model (2.1) is defined by

n

€= 00) = ) {6ilog de(y) — Mgy}, (2.4)

i=1

where 6 = (8,¢)" and y is a parameter in random error term of ;. Note here that y = 1/0 in EV of ¢
and ¥ = o2 in normal.
For variable selection of fixed effects 8 in model (2.1), we use the following penalized log-

likelihood (Fan and Li, 2001), denoted by ¢, given by

p-1
tp = p(0) = ((0) —n Z Sy Bk (2.5)
k=0

where J,(-) is a penalty function with a tuning parameter y. A larger value of 7y tends to choose a
simple model, whereas a smaller value of vy inclines to a complex model. Here, we use the three
penalty functions, LASSO, ALASSO, and SCAD. The forms of three penalty functions are:

(1) LASSO (Tibshirani, 1996):

Jy(B8)) = vIBI- (2.6)
(2) ALASSO (Zou, 2006):
Jy(1BD) = yIBIw, 2.7)
where w is a known weights vector.
(3) SCAD (Fan and Li, 2001):
(ay — 1B)+

T8 = yI(Bl < y) + 1Bl > ), (2.8)

a-—1

where a = 3.7 and x, denotes the positive part of x.
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Figure 1: Penalty functions of LASSO and SCAD. LASSO = least absolute shrinkage and selection operator;
SCAD = smoothly clipped absolute deviation.

Figure 1 displays the shapes of LASSO and SCAD functions under y = 1. A good penalty function
should produce estimates that satisfy unbiasedness, sparsity, and continuity (Fan and Li, 2001, 2002).
The LASSO is a well-known penalty, but it does not satisfy these three properties. Thus, Fan and Li
(2001, 2002) and Zou (2006) have shown that SCAD and ALASSO satisfy the three properties and
that they can perform well as the oracle procedure in terms of selecting the correct subset models and
estimating the true non-zero coeflicients, simultaneously.

For the variable selection, we want to find the estimators 3 which maximize the penalized log-
likelihood £, in (2.5), given by

PN

B =arg m[?x p.

We call the resulting estimators penalized maximum likelihood estimators (PMLEs). The PMLEs are
obtained by solving the following estimating equations:

oy _ 9
B Pr
Here we use [/, (1B)]" = J;(BiDsen(BiD) ~ (7518 /18, 1}Bx for B = B, by local quadratic approx-

imation (LQA) (Fan and Li, 2001), and sgn(-) is the sign function. It can be shown that the negative
Hessian matrix of 8 based on ¢, can be explicitly written as a simple matrix form:

p-1
—n Y BT =0, (k=0,1,....,p—1). (2.9)
k=0

&t T
H,=H,((p;0) = _OﬁaﬁT =X WX+n%,, (2.10)
where X is a n X p model matrix of covariates x;’s and W is a weight matrix with a diagonal element
w;, i.e.,

2

ot
. . 2.11
w P diag(w;), (2.11)
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with a linear predictor n = XB in AFT model (2.1) and %}, = diag{J,(|8,;))/8,l}. Let U(-) = ¢(-)/{1 -
®(-)} be the hazard function of N(0, 1), where ¢(-) and ®@(-) are the density and cumulative distribution
functions of N(0, 1), respectively. In LN AFT model, w; = {6; + (1 — 6,~)§(m,~)}/a'§, where &(m;) =
Um){U(m;) — m;}, Ulm;) = @(m;)/{1 — ®(m;)}, and m; = (y; — xiTﬁ)/o-E. In Weibull AFT model,
w; = A;/o?, where A; = exp(m;) and m; = (y; — xl.TB)/a'. We can obtain the PMLEs of 8 from the
Newton-Raphson method; its one-step formula is given by

B0+ [ ] 6 67). e

where B is the initial values of B, £,(8) = 8¢,(8)/0B. and —£(B) = H,(B). The nuisance parameter
¢ in the error term of model (2.1) is obtained from the following estimating equation:

at, ot
oy oy
since i does not depend on the penalty function. More details for the estimating equations are given

in Appendix. Then we compute the sandwich standard error (Fan and Li, 2001; Ha ez al., 2014) for ﬁ’,
from variance-covariance matrix

=0 2.13)

cov (B) = (Hgs +n Zy)fl Hpg (Hgs +n Zy)fl :

where Hgg = —0%€/0popT = XTWX.
Wang et al. (2007) showed that the generalized cross validation (GCV) approach cannot select
the tuning parameters satisfactorily, with a nonignorable overfitting effect in the resulting model. For

the selection of tuning parameter y, we use a Bayesian information criterion type (BIC-type) criterion
(Ha et al., 2014), given by

BIC' () = —2¢(B.) + log(n)df, (2.14)

where df = tr[(Hgg +n Z,/)‘l Hpg] is an effective degree of freedom.
In summary, an outline of the proposed variable-selection algorithm is described as follows.

Step 1. Find initial values of 8 and .
Step 2. In the inner loop, we maximize £, in (2.5) for 8 and .
Step 3. In the outer loop, we find y that minimizes BIC*(y) in (2.14).

After convergence, we compute the estimated standard errors for . For the initial values of 8 in
LASSO and ALASSO, we use the estimates from the AFT model without penalty. For the weights w
of the ALASSO in (2.7), following Zhang and Lu (2007) and Wang and Song (2011), we use

1
B
where B are non-penalized coefficient estimates. Following Ha et al. (2014, 2017), for the initial

values of 5 in SCAD, we use the LASSO solutions. Our procedures were implemented by using R
programs.

w
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Table 1: Simulation results under LN AFT model (02 = 1)

n Method C IC PT MSE
LASSO 2.62 0.00 0.02 0.132

100 ALASSO 4.18 0.00 0.41 0.079
SCAD 4.37 0.01 0.59 0.077

LASSO 242 0.00 0.00 0.052

300 ALASSO 4.39 0.00 0.45 0.021
SCAD 4.46 0.00 0.61 0.017

LASSO 2.68 0.00 0.03 0.032

500 ALASSO 4.50 0.00 0.59 0.015
SCAD 4.71 0.00 0.78 0.014

LN =lognormal; AFT = accelerated failure time; MSE = mean squared error; LASSO = least absolute shrinkage and selection
operator; ALASSO = adaptive LASSO; SCAD = smoothly clipped absolute deviation.

3. Simulation study

Simulation studies, based upon 100 replications of simulated data, are presented to evaluate the per-
formance of the proposed variable-selection procedure for AFT models. Here, we compare the perfor-
mances of the variable-selection methods using LASSO, ALASSO, and SCAD. Below we consider
the two distributions (LN, Weibull) for this purpose. Following the simulation scheme of Fan and Li
(2001), we generate the data from the AFT model (2.1) with the true regression parameters

B = (BoB1B2: B3, B4 B> Bes B1,Bs)" = (1,0.8,0,0,1,0,0,0.6,0)" .

Here, the corresponding covariates x = (1, x*) and covariates x* = (xi,..., x3)T are generated with
and AR(1) structure with a correlation coefficient p = 0.5. Note that x;, x4, and x; are important
covariates. We also consider three sample sizes n = 100, 300, and 500. The corresponding censoring
times C;’s are generated from an uniform distribution with a parameter empirically determined to
achieve approximately the right censoring rate about 45%. As the measures of variable selection,
we consider the average number of zero coefficients (C and IC), the probability of choosing the true
model (PT) and mean squared error (MSE). Following Zhang and Lu (2007) and Wang and Song
(2011), we summarize the median of MSEs over 100 replications to measure prediction accuracy; it is
defined by MSE(B) = (8 — )T Z(8 — 8), where X is the population covariance matrix of the covariates.
Here, the “C”(5 is the best) indicates the average number of regression coefficients, of the five true
zeros, correctly found to zero, and “IC” (0 is the best) indicates the average number of the four true
non-zeros incorrectly set to zero.

For the LN case we consider of = 1, and for the Weibull o = 0.5 (i.e., = 1/0 = 2; increasing
hazard), o = 1 (i.e., ¥ = 1/0 = 1; exponential distribution with constant hazard) and o = 2 (i.e.,
Y = 1/o = 0.5; decreasing hazard). Table 1 (LN case) and Tables 2—4 (Weibull case) summarize
the simulation results. Tables 1-4 indicate that the ALASSO and SCAD overall perform well as
compared to the LASSO. The ALASSO and SCAD methods are further improved with n, while the
LASSO method is not. In particular, the SCAD method outperforms the LASSO and ALASSO in
terms of “C”, “PT”, and “MSE”.

(1) LN case: Table 1.
(2) Weibull case: Table 2—4.

We also investigated the robustness of the proposed method when the true distribution of € in
the AFT model (2.1) is misspecified. Following Xu et al. (2010), we considered two misspecified
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Table 2: Simulation results under Weibull AFT model (o~ = 0.5)

n Method C IC PT MSE
LASSO 2.18 0 0.00 0.569

100 ALASSO 4.29 0 0.51 0.027
SCAD 4.01 0 0.36 0.027

LASSO 2.43 0 0.02 0.017

300 ALASSO 4.53 0 0.63 0.008
SCAD 4.49 0 0.69 0.008

LASSO 2.57 0 0.02 0.011

500 ALASSO 4.66 0 0.72 0.005
SCAD 4.68 0 0.75 0.004

AFT = accelerated failure time; MSE = mean squared error; LASSO = least absolute shrinkage and selection operator;
ALASSO = adaptive LASSO; SCAD = smoothly clipped absolute deviation.

Table 3: Simulation results under Weibull AFT model (o = 1)

n Method C IC PT MSE
LASSO 2.41 0 0.02 0.203

100 ALASSO 4.02 0 0.35 0.112
SCAD 4.44 0 0.61 0.100

LASSO 2.59 0 0.03 0.074

300 ALASSO 4.47 0 0.52 0.034
SCAD 4.64 0 0.72 0.029

LASSO 2.51 0 0.04 0.052

500 ALASSO 4.52 0 0.58 0.018
SCAD 4.65 0 0.75 0.015

AFT = accelerated failure time; MSE = mean squared error; LASSO = least absolute shrinkage and selection operator;
ALASSO = adaptive LASSO; SCAD = smoothly clipped absolute deviation.

Table 4: Simulation results under Weibull AFT model (o~ = 2)

n Method C IC PT MSE
LASSO 2.95 0.12 0.05 0.746

100 ALASSO 4.05 0.32 0.30 0.596
SCAD 4.63 0.63 0.44 0.625

LASSO 2.84 0.00 0.06 0.268

300 ALASSO 4.42 0.01 0.50 0.166
SCAD 4.92 0.04 0.91 0.102

LASSO 2.92 0.00 0.02 0.212

500 ALASSO 4.48 0.00 0.55 0.091
SCAD 4.94 0.00 0.94 0.058

AFT = accelerated failure time; MSE = mean squared error; LASSO = least absolute shrinkage and selection operator;
ALASSO = adaptive LASSO; SCAD = smoothly clipped absolute deviation.

distributions, a t-distribution with degree of freedom 3 (denoted by #3) and a mixture distribution
with 0.5N(0, 1) + 0.5N(0, 9) (denoted by Mix). Here, #3 and Mix are non-normal distributions with a
common mean 0, but their variances are 3 and 5, respectively. For this purpose, the LN AFT model
is fitted when the distribution of € is N(0,1), #3 or Mix. Investigating the behavior of fitting LN AFT
model is interesting because it becomes a classical normal regression model under log-transformation
of survival time and its covariate effect is estimated unbiasedly even if the baseline distribution is
misspecified under no censoring (Hutton and Monaghan, 2002). The simulation scheme is the same
as before, except for considering an additional high censoring with 70%. Table 5 summarizes the
results using a moderate sample size as in n = 300; Table 5 also shows that fitting the proposed LN
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Table 5: Simulation results of fitting LN AFT model (n = 300) when the normal assumption is satisfied or
violated

Error Censoring Method C IC PT MSE
LASSO 2.42 0.00 0.00 0.052

45% ALASSO 4.39 0.00 0.45 0.021

N©. 1) SCAD 4.46 0.00 0.61 0.017
’ LASSO 2.40 0.00 0.02 0.128
70% ALASSO 4.38 0.00 0.45 0.045

SCAD 4.57 0.00 0.63 0.032

LASSO 2.80 0.00 0.00 0.080

45% ALASSO 4.51 0.00 0.56 0.046

s SCAD 4.69 0.00 0.71 0.052
LASSO 2.61 0.00 0.00 0.176

70% ALASSO 4.32 0.01 0.43 0.109

SCAD 4.90 0.03 0.89 0.172

LASSO 2.90 0.00 0.04 0.139

45% ALASSO 4.58 0.01 0.65 0.097

Mix SCAD 4.89 0.02 0.88 0.087
LASSO 2.88 0.00 0.02 0.252

70% ALASSO 4.42 0.02 0.52 0.192

SCAD 4.91 0.11 0.84 0.227

Note: 3, t-distribution with degree of freedom 3; Mix, mixture distribution with 0.5N(0, 1) + 0.5N(0,9).
LN =lognormal; AFT = accelerated failure time; MSE = mean squared error; LASSO = least absolute shrinkage and selection
operator; ALASSO = adaptive LASSO; SCAD = smoothly clipped absolute deviation.

AFT model is overall robust against misspecified distributions, 73 and Mix. As expected, the MSEs
are increased with censoring rate from 45% to 70%. We find that the proposed method is still robust,
except for a higher IC under SCAD with Mix distribution, when censoring rate is high as in 70%.

In addition, we investigated the robustness of Weibull AFT model against mis-specifying distri-
bution. Here, Weibull AFT model is fitted when the distribution of € is non-Weibull (i.e., t3 or Mix)
under the same simulation scheme above. We again find that the simulation results (not shown) are
similar to those evident in Table 5.

4, lllustration

For the illustration of the proposed method in Section 2, we consider the PBC data of the liver (Tibshi-
rani, 1997). A total of 424 PBC patients met eligibility criteria for the randomized placebo controlled
trial of the drug D-penicillamine. Here we consider 312 patients who participated in the randomized
trial. Censoring rate due to survival was 59.8%. Table 6 summarizes the variables used in the analy-
sis. For the analyses, all covariates (i.e., all variables except for Id, Futime and Status in Table 6) are
standardized.

As presented above, we consider the two AFT models (i.e., LN and Weibull cases) with covariates
in Table 7. First, we use two standard criteria of model selection: Akaike information criterion (AIC)
and BIC, given by AIC= -2¢ + 2p and BIC = -2¢ + log(n) = p. We conduct model selection under no
penalty and choose a model with lower AIC and BIC values. Table 7 indicates the results.

From Table 7, we select the LN AFT model because the values of AIC and BIC in the LN are
all smaller than those of the Weibull. Here we checked the adequacy of the lognormal assumption of
survival time. This can be checked by a normal hazard plot (Klein and Moeschberger, 2003, p.410),
i.e., we plot ®~'(1 — (7)) versus log 7 as shown in Figure 2. Here, ®~'(-) is the inverse (i.e., probit
function) of standard normal cumulative distribution function and $(7) is the Kaplan-Meier estimate
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Table 6: Explanation of variables for primary biliary cirrhosis data

Variable Explanation
Id Case number
Futime Number of days from registration to death
Status Status at endpoint (0: survival (59.8 %), 1: death)
Drug Types of drugs (1: D-penicillmain, 2: placebo)
Age In years
Sex Sex (0: male, 1: female)
Ascites Presence of ascites (0: no, 1: yes)
Hepato Presence of hepatomegaly or enlarged liver (0: no, 1: yes)
Spiders Blood vessel malformations in the skin (0: no, 1: yes)
Edema Presence of edema
(0: no edema, 0.5: untreated or successfully treated, 1: edema despite diuretic therapy)
Bili Serum bilirunbin (mg/dl)
Chol Serum cholesterol (mg/dl)
Albumin Serum albumin (g/dl)
Copper Urine copper (ug/day)
Alk_phos Alkaline phosphotase (U/liter)
Sgot SGOT (U/ml)
Trig Triglycerides (mg/dl)
Platelet Platelets per cubic (ml/1000)
Protime Prothrombin time
Stage Histologic stage of disease

Table 7: Model selection for AFT model with primary biliary cirrhosis data

¢ AIC BIC
LN -195.41 426.82 492.00
Weibull -197.91 431.82 496.99

AFT = accelerated failure time; AIC = Akaike information criterion; BIC = Bayesian information criterion; LN = lognormal.

of the baseline survival function S¢(#). This is expected to show an approximate straight line if the
assumption of lognormal distribution is appropriate. Figure 2 shows approximatively a linear trend
for the probit survival against the log of time. Therefore, the assumption of lognormal as the baseline
distribution seems appropriate: see also Royston (2001) for the usefulness of lognormal AFT model.
Accordingly, we use the LN AFT model for the variable selection.

Table 8 shows the estimated coefficients and SEs for the PBC in the LN case. As the result of the
penalized variable selection, the values of the tuning parameters y that minimize the BIC* in (2.14)
are 0.073 for LASSO, 0.013 for ALASSO and 0.110 for SCAD, respectively. The estimates of of are
0.850, 0.629, 0.697 and 0.727 under no penalty (y = 0), LASSO, ALASSO, and SCAD, respectively.
The LASSO chooses eleven covariates (Age, Sex, Ascites, Spiders, Edema, Bili, Albumin, Copper,
Sgot, Protime, and Stage) out of the 17 covariates except for the intercept. We also confirm that these
variable-selection results are similar with the LASSO results in Cox’s PH model by Tibshirani (1997)
even if signs of both estimates are opposite. The SCAD choose eight covariates (Age, Edema, Bili,
Albumin, Copper, Sgot, Protime, and Stage). The ALASSO selects one more variable (i.e., Ascites)
than in SCAD, which is not significant under no penalty. In particular, the non-zero estimates by
the SCAD are generally similar to the corresponding estimates under no penalty. LASSO selects
many covariates, which are not significant under no penalty. This may be because the LASSO selects
unimportant variables more than ALASSO and SCAD, as evident in the lower “C” values of the
LASSO in Table 1. The findings indicate that the LASSO might not properly identify important
variables in the AFT models; for the frailty models, see Ha et al. (2014).
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Figure 2: Plot of probit(1 — survival) against log of days.

Table 8: Variable selection using LN AFT model for primary biliary cirrhosis data

Variable No penalty LASSO LASSOf ALASSO SCAD

Intercept 8.073(0.086) 7.885(0.060) - 7.994(0.065) 7.989(0.066)
Drug —0.002(0.069) 0.000(0.000) 0.00(0.00) 0.000(0.000) 0.000(0.000)
Age —0.221(0.080) —0.139(0.039) 0.17(0.09) —0.179(0.047) —0.099(0.028)
Sex 0.091(0.068) 0.016(0.011) —-0.01(0.03) 0.000(0.000) 0.000(0.000)
Ascites —0.112(0.076) —0.092(0.032) 0.04(0.07) —0.023(0.009) 0.000(0.000)
Hepato —0.005(0.080) 0.000(0.000) 0.00(0.00) 0.000(0.000) 0.000(0.000)
Spiders —-0.116(0.072) —0.051(0.024) 0.02(0.05) 0.000(0.000) 0.000(0.000)
Edema —0.185(0.081) —0.191(0.042) 0.18(0.11) —0.246(0.046) —0.304(0.053)
Bili —0.202(0.086) —0.204(0.043) 0.35(0.12) —0.244(0.047) —0.306(0.053)
Chol —0.048(0.074) 0.000(0.000) 0.00(0.00) 0.000(0.000) 0.000(0.000)
Albumin 0.106(0.077) 0.100(0.034) —-0.22(0.10) 0.029(0.011) 0.051(0.018)
Copper —0.148(0.073) —0.152(0.040) 0.21(0.11) —0.143(0.037) —0.116(0.031)
Alk_phos —-0.040(0.061) 0.000(0.000) 0.00(0.00)) 0.000(0.000) 0.000(0.000)
Sgot —0.187(0.075) —0.103(0.035) 0.09(0.08) —0.118(0.038) —0.030(0.012)
Trig 0.022(0.072) 0.000(0.000) 0.00(0.00) 0.000(0.000) 0.000(0.000)
Platelet 0.004(0.072) 0.000(0.000) 0.00(0.00) 0.000(0.000) 0.000(0.000)
Protime —-0.167(0.073) —0.123(0.038) 0.09(0.09) —0.133(0.038) —0.080(0.024)
Stage —0.244(0.091) —0.181(0.044) 0.21(0.09) —0.259(0.055) —0.275(0.057)

T indicates the results of variable selection from Cox’s PH model by Tibshirani (1997).
LN = lognormal; AFT = accelerated failure time; LASSO = least absolute shrinkage and selection operator; ALASSO =
adaptive LASSO; SCAD = smoothly clipped absolute deviation.

5. Discussion

Through penalized likelihood approach, we have shown the procedures that select important variables
in the AFT model. We have demonstrated via simulation studies and illustration that the proposed
variable-selection methods generally work well. Here we have found that the SCAD method performs
better than the LASSO and ALASSO methods. The results confirm those in semi-parametric frailty
hazard models by Ha et al. (2014).

The AFT model has some advantages over Cox’s PH model as follows (Ha et al., 2017, pp.31—
32): (i)AFT model does not require a PH assumption (i.e., a strong assumption) as in the Cox’s model;
(ii) The interpretation of regression coefficients is easier in the AFT model than in the Cox’s model;
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(ii1) The estimated regression parameters in AFT model are relatively robust against misspecification
of the model assumption, while ones in the Cox’s model can be biased. In addition, following Reid
(1994), Cox pointed out that “AFT models are in many ways more appealing” than the PH models
“because of their quite direct physical interpretation”.

We have also demonstrated via a simulation study that the proposed method is somewhat robust
against misspecification of the assumed distribution. It would be also interested to investigate the
robustness of the LN or Weibull AFT model against a further mis-specifying distribution, for exam-
ple, when the true distribution of survival time 7 is not smooth and has change points. However,
comparing with an existing variable selection procedure for semiparametric AFT model will be more
informative about the setting in which the proposed method is useful; this would be an interesting
future work.

We have developed the variable-selection methods in AFT models with low-dimensional covari-
ates (n > p). Developing the penalized AFT models with high-dimensional covariates (n < p) would
be an interesting topic. The proposed methods are based on parametric penalized-likelihood ap-
proaches that allow for LN and Weibull distributions. Therefore, an extension to semi-parametric
AFT models (Huang et al., 2006; Huang and Ma, 2010) with an unspecified error distribution would
be suitable for further work.

Furthermore, the proposed method can be extended to AFT models allowing for random effects
that can be useful for analyzing correlated survival data (Ha et al., 2017).
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Appendix: Derivations
(1) LN AFT model

The log-likelihood for LN AFT model is given by

(B.oty.0)= > [(x {—% log o2 + log (m;) — log(1 — <D(m,~))} +log(1 - CD(mi))} :

i

where m; = (y; — xiT,B) /0. The estimating equations for 8; (k =0,1,...,p—1) and of are as follows:
ot
5= Z {&im; + (1 = §)U(my)} xi = 0,
ot 1 2
507 = 27 D {0 (m? = 1)+ (1 = 6)UGmm} = 0,

where U(-) = ¢(-)/(1 = ©(-)).
For the variable selection, we have to solve the following estimating equation:

o, ot

B —n;J;(kasgn(ka =0 (k=0,1,....p—1),
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where sgn(-) is the sign function. The negative Hessian matrix is given by

&, ¢,
¢, OBIBT OB
0= T o &, |
9 € p p
do2opT o202
where
¢,
-—2 =xTwx
BB WX +ny,,
&, ¢, 1
— = — = — 261 i 1 - 61- U i ;i ; s
0Bdc?  d020Pr | 207 Z[ mi + (1= U (my) + migmp)}] xi
and

o mié(m;) + 3U(m;)
_30-260-2 = rf; Z [6,» (Zm,2 - 1) + (1 =6)m; {f}]

Here &(m;) = U(m){U(m;) — mi}, W = diag(w;), and w; = {6; + (1 — 6,)é(m))}/ 0.
(2) Weibull AFT model

The log-likelihood for Weibull AFT model is given by

C_+T
fw,a;y,5)=2[5i{—1oga+y’ xiﬁ}—A,],

o

i

where A; = exp{(y; — xiTﬁ) /o}. The estimating equations for g and o are:

a1

o ~— D 6= A =0, (k=0.1....p=1),
a1

o o Z{(Si(] +m;) —miAi} =0,

where A; = exp(m;) with m; = (y; — x] B)/ 0.
For the variable selection, the corresponding estimating equations are given by:

ae,

ot ,
B nzk: J(1BeDsgn(|Bi)) = 0,

The negative Hessian matrix is again given by

>, >,
o 7, | opapT  9Bdc
r a(ﬁ’ 0.)2 6251, ang ’

T 000pT  d0do
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where
—82;% =X"WX+ny,,
_;[jsg - _aizag,[[;T = % ,- (A1 +m;) = 6} xixs
and
_% = (%2 Z{mil\i(z +m;) — 6;(2m; + 1)}

i

Here W = diag(w;) with w; = A;/0>.
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