• Title/Summary/Keyword: Abutments

Search Result 423, Processing Time 0.02 seconds

Screw loosening and changes in removal torque relative to abutment screw length in a dental implant with external abutment connection after oblique cyclic loading

  • Lee, Joo-Hee;Cha, Hyun-Suk
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.6
    • /
    • pp.415-421
    • /
    • 2018
  • PURPOSE. This study investigated the effects of abutment screw lengths on screw loosening and removal torque in external connection implants after oblique cyclic loading. MATERIALS AND METHODS. External connection implants were secured with abutment screws to straight abutments. The abutment-implant assemblies were classified into seven groups based on the abutment screw length, with each group consisting of five assemblies. A cyclic load of 300 N was applied at a $30^{\circ}$ angle to the loading axis until one million cycles were achieved. Removal torque values (RTVs) before and after loading, and RTV differences were evaluated. The measured values were analyzed using repeated measures of analysis of variance with the Student-Newman-Keuls multiple comparisons. RESULTS. All assemblies survived the oblique cyclic loading test without screw loosening. There was a significant decrease in the RTVs throughout the observed abutment screw lengths when the abutment-implant assemblies were loaded repeatedly (P<.001). However, the abutment screw length did not show significant difference on the RTVs before and after the experiment when the abutment screw length ranged from 1.4 to 3.8 mm (P=.647). CONCLUSION. Within the limit of this experiment, our results indicate that the abutment screw length did not significantly affect RTV differences after oblique cyclic loading when a minimum length of 1.4 mm (3.5 threads) was engaged. These findings suggest that short abutment screws may yield stable clinical outcomes comparable to long screws in terms of load resistance.

Response of integral abutment bridges under a sequence of thermal loading and seismic shaking

  • Tsinidis, Grigorios;Papantou, Maria;Mitoulis, Stergios
    • Earthquakes and Structures
    • /
    • v.16 no.1
    • /
    • pp.11-28
    • /
    • 2019
  • This article investigates the response of Integral Abutment Bridges (IAB) when subjected to a sequence of seasonal thermal loading of the deck followed by ground seismic shaking in the longitudinal direction. Particular emphasis is placed on the effect of pre-seismic thermal Soil-Structure Interaction (SSI) on the seismic performance of the IAB, as well as on the ability of various backfills configurations, to minimize the unfavorable SSI effects. A series of two-dimensional numerical analyses were performed for this purpose, on a complete backfill-integral bridge-foundation soil system, subjected to seasonal cyclic thermal loading of the deck, followed by ground seismic shaking, employing ABAQUS. Various backfill configurations were investigated, including conventional dense cohesionless backfills, mechanically stabilized backfills and backfills isolated by means of compressive inclusions. The responses of the investigated configurations, in terms of backfill deformations and earth pressures, and bridge resultants and displacements, were compared with each other, as well as with relevant predictions from analyses, where the pre-seismic thermal SSI effects were neglected. The effects of pre-seismic thermal SSI on the seismic response of the coupled IAB-soil system were more evident in cases of conventional backfills, while they were almost negligible in case of IAB with mechanically stabilized backfills and isolated abutments. Along these lines, reasonable assumptions should be made in the seismic analysis of IAB with conventional sand backfills, to account for pre-seismic thermal SSI effects. On the contrary, the analysis of the SSI effects, caused by thermal and seismic loading, can be disaggregated in cases of IAB with isolated backfills.

Full mouth rehabilitation utilizing computer guided implant surgery and CAD/CAM (Computer guided implant surgery와 CAD/CAM을 활용한 전악 수복 증례)

  • Kim, Sungjin;Han, Jung-Suk;Kim, Sung-Hun;Yoon, Hyung-In;Yeo, In-Sung Luke
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.1
    • /
    • pp.57-65
    • /
    • 2019
  • Computer aided design and manufacturing and implant surgery using a guide template improve restoration-driven implant treatment procedures. This case utilized those digital technologies to make definitive prostheses for a patient. According to the work flow of digital dentistry, cone beam computed tomography established the treatment plan, which was followed to make the guide template for implant placement. The template guided the implants to be installed as planned. The customized abutments and surveyed fixed restorations were digitally designed and made. The metal framework of the removable partial denture was cast from resin pattern using an additive manufacturing technique, and the artificial resin teeth were replaced with the zirconia onlays for occlusal stability. These full mouth rehabilitation procedures provided functionally and aesthetically satisfactory results for the patient.

Pontic site development with an implant submergence technique for unaesthetic implant in the anterior maxilla (상악 전치부 임플란트의 비심미성 개선을 위한 임플란트 침수(submergence)를 동반한 치조제 증대술)

  • Song, Yujeong;Lee, Ju-Youn
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.36 no.4
    • /
    • pp.289-295
    • /
    • 2020
  • Improving implant esthetics is very difficult, especially in cases where unaesthetic problems are related to implants in the maxillary anterior dentition. A 69-year old male patient was referred by a prosthodontist for periodic pus discharge and an unaesthetic implant prosthesis (maxillary right lateral incisor). The implant was placed too deeply and showed soft tissue volume deficiency and a long clinical crown. After a clinical and radiographic examination, implant submergence and alveolar ridge augmentation were performed to enhance the aesthetics instead of an explantation. The treatment plan was as follows: extraction the adjacent teeth with tooth mobility, secondary caries, and poor prognosis; placement an additional dental implant with hard and soft tissue grafting; fabrication a fixed bridge using implant abutments. A fixed esthetic prosthesis using implants was fabricated, and the patient was satisfied with the prosthesis. A ridge augmentation with implant submergence may be an alternative for solving the problems of unaesthetic implant restorations in the esthetic zone.

Effect of abutment neck taper and cement types on the amount of remnant cement in cement-retained implant restorations: an in vitro study

  • Park, Yeon-Hee;Kim, Kyoung-A;Lee, Jung-jin;Kwon, Tae-min;Seo, Jae-Min
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.3
    • /
    • pp.162-172
    • /
    • 2022
  • PURPOSE. The present study aims to analyze the effect of abutment neck taper and types of cement on the amount of undetected remnant cement of cement-retained implant prostheses. MATERIALS AND METHODS. Three neck taper angles (53°, 65°, 77°) and three types of cement (RMGI: resin-modified glass ionomer, ZPC: zinc phosphate cement, ZOE: zinc oxide eugenol cement) were used. For each group, the surface percentage was measured using digital image and graphic editing software. The weight of before and after removing remnant cement from the abutment-crown assembly was measured using an electronic scale. Two-way ANOVA and Duncan & Scheffe's test were used to compare the calculated surface percentage and weight of remnant cement (α = .05). RESULTS. There were significant differences in remnant cement surface percentage and weight according to neck taper angles (P < .05). However, there were no significant differences in remnant cement surface percentage and weight on types of cement. No interaction was found between neck taper angles and types of luting cement (P > .05). The wide abutment with a small neck taper angle showed the most significant amount of remnant cement. And the types of luting cement did not influence the amount of residual cement. CONCLUSION. To remove excess cement better, the emergence profile of the crown should be straight to the neck taper of the abutment in cement-retained implant restoration.

Effect of posterior span length on the trueness and precision of 3 intraoral digital scanners: A comparative 3-dimensional in vitro study

  • Fattouh, Mohamed;Kenawi, Laila Mohamed Mohamed;Fattouh, Hesham
    • Imaging Science in Dentistry
    • /
    • v.51 no.4
    • /
    • pp.399-406
    • /
    • 2021
  • Purpose: This in vitro study measured and compared 3 intraoral scanners' accuracy (trueness and precision) with different span lengths. Materials and Methods: Three master casts were prepared to simulate 3 different span lengths (fixed partial dentures with 3, 4, and 5 units). Each master cast was scanned once with an E3 lab scanner and 10 times with each of the 3 intraoral scanners (Trios 3, Planmeca Emerald, and Primescan AC). Data were stored as Standard Tessellation Language (STL) files. The differences between measurements were compared 3-dimensionally using metrology software. Data were analyzed using 1-way analysis of variance with post hoc analysis by the Tukey honest significant difference test for trueness and precision. Statistical significance was set at P<0.05. Results: A statistically significant difference was found between the 3 intraoral scanners in trueness and precision (P<0.05). Primescan AC showed the lowest trueness and precision values(36.8 ㎛ and 42.0 ㎛;(39.4 ㎛ and 51.2 ㎛; and 54.9 ㎛ and 52.7 ㎛) followed by Trios 3 (38.9 ㎛ and 53.5 ㎛; 49.9 ㎛ and 59.1 ㎛; and 58.1 ㎛ and 64.5 ㎛) and Planmeca Emerald (60.4 ㎛ and 63.6 ㎛; 61.3 ㎛ and 69.0 ㎛; and 70.8 ㎛ and 74.3 ㎛) for the 3-unit, 4-unit, and 5-unit fixed partial dentures, respectively. Conclusion: Primescan AC had the best trueness and precision, followed by Trios 3 and Planmeca Emerald. Increasing span length reduced the trueness and precession of the 3 scanners; however, their values were within the accepted successful ranges.

Mandibular implant assisted removable partial denture with a small number of implant crowns: two case reports (소수의 임플란트 크라운을 지대치로 이용한 하악 가철성 국소 의치 수복 증례)

  • Kim, Youla;Lee, Suyoung
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.38 no.2
    • /
    • pp.110-119
    • /
    • 2022
  • When restoration for partially edentulous patients, abutments are not always in favorable positions for making removable partial dentures. Because of these situations, patients are sometimes unsatisfied with the stability and support of their removable partial prostheses. In this regard, removable partial denture using a few implant surveyed crown prostheses can be a good alternative. It can be expected to increase stability and support of removable partial dentures by strategically placing a small number of implants and restoring with implant-supported surveyed crowns. In these cases, the patients who had unilateral residual teeth on mandible were treated with two implant surveyed crowns in the tactical place to have bilateral distribution. After definitive removable partial prosthesis, the patients showed satisfaction with the masticatory function and comfort of using removable dentures.

The effect of the digital manufacturing technique of cantilevered implant-supported frameworks on abutment screw preload

  • Altuwaijri, Shahad Mohammmed;Alotaibi, Hanan Nejer;Alnassar, Talal Mughaileth
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.1
    • /
    • pp.22-31
    • /
    • 2022
  • PURPOSE. The purpose of this study was to investigate the misfit and screw preload at the implant abutment connection of implant supported fixed dental prosthesis with cantilever (ICFDP) manufactured using different digital manufacturing techniques and to compare the screw preload before and after cyclic loading. MATERIALS AND METHODS. Mandibular jaw model with four intra-foraminal implants was scanned using digital scanner. Stereolithography file was used to design a framework with nonengaging (NE) abutments and 10 mm cantilever distal to one terminal implant. Five frameworks were constructed using combined digital-conventional techniques (CAD-cast), and five frameworks were constructed using three-dimensional printing (3DP). Additional CAD-cast framework was constructed in a way that ensures passive fit (PF) to use as control. Scanning electron microscope (SEM) measured the implant abutment connection misfit. Sixty screws were used on the corresponding frameworks. Screws were torqued and pre-cyclic loading reverse torque value (RTV) was recorded. Frameworks were subjected to 200,000 loading cycles with a loading point 9 mm from the center of terminal implants adjacent to the cantilever and post-cyclic loading RTVs were recorded. RESULTS. Microscopic readings showed significant differences between frameworks. PF demonstrated the lowest measurements of 16.04 (2.6) ㎛ while CAD-cast demonstrated the highest measurements of 29.2 (3.1) ㎛. In all groups, RTVs were significantly lower than the applied torque. Post-cyclic loading RTV was significantly lower than pre-cyclic loading RTV in PF and 3DP frameworks. Differences in RTVs between the three manufacturing techniques were insignificant. CONCLUSION. Although CAD-cast and three-dimensionally printed (3DP) both produce frameworks with clinically acceptable misfit, 3DP might not be the technique of choice for maintaining screw's preload stability under an aggressive loading situation.

Comparative finite element analysis of mandibular posterior single zirconia and titanium implants: a 3-dimensional finite element analysis

  • Choi, Sung-Min;Choi, Hyunsuk;Lee, Du-Hyeong;Hong, Min-Ho
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.6
    • /
    • pp.396-407
    • /
    • 2021
  • PURPOSE. Zirconia has exceptional biocompatibility and good mechanical properties in clinical situations. However, finite element analysis (FEA) studies on the biomechanical stability of two-piece zirconia implant systems are limited. Therefore, the aim of this study was to compare the biomechanical properties of the two-piece zirconia and titanium implants using FEA. MATERIALS AND METHODS. Two groups of finite element (FE) models, the zirconia (Zircon) and titanium (Titan) models, were generated for the exam. Oblique (175 N) and vertical (175 N) loads were applied to the FE model generated for FEA simulation, and the stress levels and distributions were investigated. RESULTS. In oblique loading, von Mises stress values were the highest in the abutment of the Zircon model. The von Mises stress values of the Titan model for the abutment screw and implant fixture were slightly higher than those of the Zircon model. Minimum principal stress in the cortical bone was higher in the Titan model than Zircon model under oblique and vertical loading. Under both vertical and oblique loads, stress concentrations in the implant components and bone occurred in the same area. Because the material itself has high stiffness and elastic modulus, the Zircon model exhibited a higher von Mises stress value in the abutments than the Titan model, but at a level lower than the fracture strength of the material. CONCLUSION. Owing to the good esthetics and stress controllability of the Zircon model, it can be considered for clinical use.

Structural Analysis and Safety Assessment for Constricted Bridges (협착교량의 구조해석 및 안전성 평가)

  • Jeong, Jae-Hun;Kim, Moon-Ok;Choi, Hyun-Ho;Kim, Jang-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.33-38
    • /
    • 2022
  • As the intense heat continues, many cases of highway pavement blow up and bridge expansion joints damages have been inspected. Especially, Expansion joint closure of bridges is an important problem that can threat the safety of the bridge structure or reduce long-term durability. This paper proposed a structural analysis method for bridges having expansion joint closure and structural analysis was performed to verify the effects according to bridge types. Analysis bridges were divided into four types: concrete and steel bridges, shallow and piled foundations. To induce the situation of abutments and bridge decks are jammed, the following loads were additionally considered; lateral flow pressure, pavement expansion by alkali-aggregate reaction, creep settlement of backfill. The structural analysis method was verified by comparing the structural analysis results with the actually measured joint gap data. In addition, behavioral analysis due to joint closure was conducted to confirm the change in safety ratio by type of superstructure as the axial force increased.