• 제목/요약/키워드: Abscisic Acid

검색결과 211건 처리시간 0.031초

The ABA Effect on the Accumulation of an Invertase Inhibitor Transcript that Is Driven by the CAMV35S Promoter in ARABIDOPSIS

  • Koh, Eun-Ji;Lee, Sung June;Hong, Suk-Whan;Lee, Hoi Seon;Lee, Hojoung
    • Molecules and Cells
    • /
    • 제26권3호
    • /
    • pp.236-242
    • /
    • 2008
  • Invertase (${\beta}$-D-fructofuranosidase; EC 3.2.1.26) catalyzes the conversion of sucrose into glucose and fructose and is involved in an array of important processes, including phloem unloading, carbon partitioning, the response to pathogens, and the control of cell differentiation and development. Its importance may have caused the invertases to evolve into a multigene family whose members are regulated by a variety of different mechanisms, such as pH, sucrose levels, and inhibitor proteins. Although putative invertase inhibitors in the Arabidopsis genome are easy to locate, few studies have been conducted to elucidate their individual functions in vivo in plant growth and development because of their high redundancy. In this study we assessed the functional role of the putative invertase inhibitors in Arabidopsis by generating transgenic plants harboring a putative invertase inhibitor gene under the control of the CaMV35S promoter. A transgenic plant that expressed high levels of the putative invertase inhibitor transcript when grown under normal conditions was chosen for the current study. To our surprise, the stability of the invertase inhibitor transcripts was shown to be down-regulated by the phytohormone ABA (abscisic acid). It is well established that ABA enhances invertase activity in vivo but the underlying mechanisms are still poorly understood. Our results thus suggest that one way ABA regulates invertase activity is by down-regulating its inhibitor.

Expression of a rice DREB1 gene, OsDREB1D, enhances cold and high-salt tolerance in transgenic Arabidopsis

  • Zhang, Yang;Chen, Chen;Jin, Xiao-Fen;Xiong, Ai-Sheng;Peng, Ri-He;Hong, Yi-Huan;Yao, Quan-Hong;Chen, Jian-Min
    • BMB Reports
    • /
    • 제42권8호
    • /
    • pp.486-492
    • /
    • 2009
  • OsDREB1D, a special DREB (dehydration responsive element binding protein) homologous gene, whose transcripts cannot be detected in rice (Oryza sativa L), either with or without stress treatments, was amplified from the rice genome DNA. The yeast one-hybrid assay revealed that OsDREB1D was able to form a complex with the dehydration responsive element/C-repeat motif. It can also bind with a sequence of LTRE (low temperature responsive element). To analyze the function of OsDREB1D, the gene was transformed and over-expressed in Arabidopsis thaliana cv. Columbia. Results indicated that the over-expression of OsDREB1D conferred cold and high-salt tolerance in transgenic plants, and that transgenic plants were also insensitive to ABA (abscisic acid). From these data, we deduced that this OsDREB1D gene functions similarly as other DREB transcription factors. The expression of OsDREB1D in rice may be controlled by a special mechanism for the redundancy of function.

Antagonistic Regulation of Arabidopsis Growth by Brassinosteroids and Abiotic Stresses

  • Chung, Yuhee;Kwon, Soon Il;Choe, Sunghwa
    • Molecules and Cells
    • /
    • 제37권11호
    • /
    • pp.795-803
    • /
    • 2014
  • To withstand ever-changing environmental stresses, plants are equipped with phytohormone-mediated stress resistance mechanisms. Salt stress triggers abscisic acid (ABA) signaling, which enhances stress tolerance at the expense of growth. ABA is thought to inhibit the action of growth-promoting hormones, including brassinosteroids (BRs). However, the regulatory mechanisms that coordinate ABA and BR activity remain to be discovered. We noticed that ABA-treated seedlings exhibited small, round leaves and short roots, a phenotype that is characteristic of the BR signaling mutant, brassinosteroid insensitive1-9 (bri1-9). To identify genes that are antagonistically regulated by ABA and BRs, we examined published Arabidopsis microarray data sets. Of the list of genes identified, those upregulated by ABA but downregulated by BRs were enriched with a BRRE motif in their promoter sequences. After validating the microarray data using quantitative RT-PCR, we focused on RD26, which is induced by salt stress. Histochemical analysis of transgenic Arabidopsis plants expressing RD26pro:GUS revealed that the induction of GUS expression after NaCl treatment was suppressed by co-treatment with BRs, but enhanced by co-treatment with propiconazole, a BR biosynthetic inhibitor. Similarly, treatment with bikinin, an inhibitor of BIN2 kinase, not only inhibited RD26 expression, but also reduced the survival rate of the plant following exposure to salt stress. Our results suggest that ABA and BRs act antagonistically on their target genes at or after the BIN2 step in BR signaling pathways, and suggest a mechanism by which plants fine-tune their growth, particularly when stress responses and growth compete for resources.

芍藥(Paeonia lactiflora Pall.)의 子葉組織 培養시 식물생장조절제가 體細胞胚發생에 미치는 影響 (Effect of Plant Growth Regulators on Somatic Embryogenesis from Cotyledon of Herbaceous Peony (Paeonia lactiflora Pall.))

  • 신종희;손재근;김경민;김기재;김재철
    • 식물조직배양학회지
    • /
    • 제25권2호
    • /
    • pp.115-118
    • /
    • 1998
  • 작약의 종자로부터 절취한 배를 기내 발아시켜 획득한 자엽조직으로부터 체세포배발생에 적합한 배지내의 식물생장 조절제 조성을 밝히기 위하여 전배양배지와 배유도배지의 식물생장조절제 조성별 체세포배 발생율과 접합자배의 구조와 동일한 정상 체세포배 발생 정도를 조사한 결과를 요약하면 다음과 같다. 자엽으로부터 체세포배발생을 위한 식물생장조절제로 ABA가 첨가된 배지에서 체세포배 발생율이 높았으며, 특히 ABA가 0.5 mg/L 첨가된 배지에서 59.9%의 높은 체세포배 발생율을 나타내었다. ABA가 첨가된 배지에서 접합자배를 배양할 경우 발아가 저해되고 발아한 식물체가 비정상적인 형태로 발달하는 현상이 나타났으나 이들 비정상적인 형태의 자엽으로부터 체세포배 발생이 효과적이었으며, ABA가 0.5 mg/L 첨가된 배지에서 자엽으로부터 발생된 체세포배의 형태는 2개의 자엽을 갖는 정상체세포배가 22.6%, 3개 19.5%, 1개 9.8%로 나타났으며 볼링핀 또는 나팔모양의 비정상적인 배는 1.3%로 낮게 나타났다.

  • PDF

Transgenic expression of rice MYB102 (OsMYB102) delays leaf senescence and decreases abiotic stress tolerance in Arabidopsis thaliana

  • Piao, Weilan;Sakuraba, Yasuhito;Paek, Nam-Chon
    • BMB Reports
    • /
    • 제52권11호
    • /
    • pp.653-658
    • /
    • 2019
  • MYB-type transcription factors (TFs) play important roles in plant growth and development, and in the rapid responses to unfavorable environmental conditions. We recently reported the isolation and characterization of a rice (Oryza sativa) MYB TF, OsMYB102, which is involved in the regulation of leaf senescence by downregulating abscisic acid (ABA) biosynthesis and the downstream signaling response. Based on the similarities of their sequences and expression patterns, OsMYB102 appears to be a homolog of the Arabidopsis thaliana AtMYB44 TF. Since AtMYB44 is a key regulator of leaf senescence and abiotic stress responses, it is important to examine whether AtMYB44 homologs in other plants also act similarly. Here, we generated transgenic Arabidopsis plants expressing OsMYB102 (OsMYB102-OX). The OsMYB102-OX plants showed a delayed senescence phenotype during dark incubation and were more susceptible to salt and drought stresses, considerably similar to Arabidopsis plants overexpressing AtMYB44. Real-time quantitative PCR (RT-qPCR) revealed that, in addition to known senescence-associated genes, genes encoding the ABA catabolic enzymes AtCYP707A3 and AtCYP707A4 were also significantly upregulated in OsMYB102-OX, leading to a significant decrease in ABA accumulation. Furthermore, protoplast transient expression and chromatin immunoprecipitation assays revealed that OsMYB102 directly activated AtCYP707A3 expression. Based on our findings, it is probable that the regulatory functions of AtMYB44 homologs in plants are highly conserved and they have vital roles in leaf senescence and the abiotic stress responses.

Effect of Bacillus aryabhattai H26-2 and B. siamensis H30-3 on Growth Promotion and Alleviation of Heat and Drought Stresses in Chinese Cabbage

  • Shin, Da Jeong;Yoo, Sung-Je;Hong, Jeum Kyu;Weon, Hang-Yeon;Song, Jaekyeong;Sang, Mee Kyung
    • The Plant Pathology Journal
    • /
    • 제35권2호
    • /
    • pp.178-187
    • /
    • 2019
  • Plants are exposed to biotic stresses caused by pathogen attack and complex abiotic stresses including heat and drought by dynamic climate changes. To alleviate these stresses, we investigated two bacterial stains, H26-2 and H30-3 in two cultivars ('Ryeokkwang' and 'Buram-3-ho') of Chinese cabbage in plastic pots in a greenhouse. We evaluated effects of bacterial strains on plant growth-promotion and mitigation of heat and drought stresses; the role of exopolysaccharides as one of bacterial determinants on alleviating stresses; biocontrol activity against soft rot caused by Pectobacterium carotovorum subsp. carotovorum PCC21. Strains H26-2 and H30-3 significantly increased fresh weights compared to a $MgSO_4$ solution; reduced leaf wilting and promoted recovery after re-watering under heat and drought stresses. Chinese cabbages treated with H26-2 and H30-3 increased leaf abscisic acid (ABA) content and reduced stomatal opening after stresses treatments, in addition, these strains stably colonized and maintained their populations in rhizosphere during heat and drought stresses. As well as tested bacterial cells, exopolysaccharides (EPS) of H30-3 could be one of bacterial determinants for alleviation of tested stresses in Chinese cabbages, however, the effects were different to cultivars of Chinese cabbages. In addition to bacterial activity to abiotic stresses, H30-3 could suppress incidence (%) of soft rot in 'Buram-3-ho'. The tested strains were identified as Bacillus aryabhattai H26-2 and B. siamensis H30-3 based on 16S rRNA gene sequence analysis. Taken together, H26-2 and H30-3 could be candidates for both plant growth promotion and mitigation of heat and drought stresses in Chinese cabbage.

Effects of winter and spring housing on growth performance and blood metabolites of Pengbo semi-wool sheep in Tibet

  • Jin, Yan Mei;Zhang, Xiao Qing;Badgery, Warwick B;Li, Peng;Wu, Jun Xi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권10호
    • /
    • pp.1630-1639
    • /
    • 2019
  • Objective: Sixty Pengbo semi-wool sheep ewes (approximately 1.5-years-old; $31.33{\pm}0.43kg$) were randomly assigned to two groups, either grazing (G) or dry lot feeding (D), to examine the effects of traditional daily grazing and dry lot feeding on performance and blood metabolites during the cold season in Tibetan Plateau. Methods: The ewes in the G group were grazed continuously each day and housed in one shed each evening, while the ewes in the D group were housed in another shed all day. All animals were fed 400 g/d of commercial concentrate, and grass hay was available freely throughout the experimental period. Results: Compared with the G group, the ewes in the D group had higher (p<0.05) live weight and weight gain. The D group ewes had greater (p<0.05) numbers of white blood cells and platelets, while they had lower (p<0.05) platelet-large cell ratios, cholesterol, high-density lipoprotein cholesterol and glutathione peroxidase, as compared with the G group ewes. Additionally, three serum metabolites, abscisic acid, xanthoxin and 3,4-dihydroxy-5-polypren, were upregulated (p<0.05) in the G group in comparison with the D group. Conclusion: In conclusion, a dry lot feeding regime during the winter and spring period will increase the productivity of sheep and improve blood physiological and biochemical profiles.

Identification of a key signaling network regulating perennating bud dormancy in Panax ginseng

  • Jeoungeui Hong;Soeun Han;Kyoung Rok Geem;Wonsil Bae;Jiyong Kim;Moo-Geun Jee;Jung-Woo Lee;Jang-Uk Kim;Gisuk Lee;Youngsung Joo;Donghwan Shim;Hojin Ryu
    • Journal of Ginseng Research
    • /
    • 제48권5호
    • /
    • pp.511-519
    • /
    • 2024
  • Background: The cycle of seasonal dormancy of perennating buds is an essential adaptation of perennial plants to unfavorable winter conditions. Plant hormones are key regulators of this critical biological process, which is intricately connected with diverse internal and external factors. Recently, global warming has increased the frequency of aberrant temperature events that negatively affect the dormancy cycle of perennials. Although many studies have been conducted on the perennating organs of Panax ginseng, the molecular aspects of bud dormancy in this species remain largely unknown. Methods: In this study, the molecular physiological responses of three P. ginseng cultivars with different dormancy break phenotypes in the spring were dissected using comparative genome-wide RNA-seq and network analyses. These analyses identified a key role for abscisic acid (ABA) activity in the regulation of bud dormancy. Gene set enrichment analysis revealed that a transcriptional network comprising stress-related hormone responses made a major contribution to the maintenance of dormancy. Results: Increased expression levels of cold response and photosynthesis-related genes were associated with the transition from dormancy to active growth in perennating buds. Finally, the expression patterns of genes encoding ABA transporters, receptors (PYRs/PYLs), PROTEIN PHOSPHATASE 2Cs (PP2Cs), and DELLAs were highly correlated with different dormancy states in three P. ginseng cultivars. Conclusion: This study provides evidence that ABA and stress signaling outputs are intricately connected with a key signaling network to regulate bud dormancy under seasonal conditions in the perennial plant P. ginseng.

토마토 육묘과정에서 단기간 ABA처리가 묘소질과 건조내성에 미치는 영향 (Influence of Short-term Application of Abscisic Acid in Nutrient Solution on Growth and Drought Tolerance of Tomato Seedlings)

  • 김일섭;넉탕부;후앙텅부;최기영;김영식
    • 생물환경조절학회지
    • /
    • 제24권1호
    • /
    • pp.13-20
    • /
    • 2015
  • 본 실험은 단기간 ABA처리가 토마토 묘의 생장과 증산율, 기공 저항성 및 건조 내성에 미치는 영향을 검토하기 위하여 수행되었다. 실험은 25일간 플러그 트레이에서 육묘한 토마토 묘를 간이 수경재배 키트에 이식하여 양액 육묘하면서 ABA처리 효과와 건조 내성을 검토하였다. 배양액에 ABA를 0.5, 1, 2, 및 $3mg{\cdot}L^{-1}$의 농도로 첨가한 4개의 처리구와 무처리구를 설계하여 5일과 10일간 양액육묘한 뒤 묘소질, 엽온, 증산율, 기공확산 저항성을 측정하였다. 건조 내성을 검토하기 위한 수분 스트레스 처리는 PEG 8,000을 이용하여 -5bar로 조정한 고삼투압 용액에 ABA처리 직후의 묘를 이식한 뒤, 묘의 위조 정도를 조사하였다. 저농도(0.5와 $1mg{\cdot}L^{-1}$)의 ABA처리구에서 묘소질은 경경을 제외하고 대부분의 생육에서 통계적 유의차는 나타나지 않았으나, 2와 $3mg{\cdot}L^{-1}$의 농도에서는 지상부의 생장이 억제되었다. 근권부의 생장은 $1mg{\cdot}L^{-1}$의 농도처리에서만 뿌리의 건물중과 생체중, 전표면적, 근장, 근경, root tip수 모두가 유의적으로 증가하였으며, 그 외의 처리농도에서는 일부의 생육지표를 제외하고는 유의적 차이가 나타나지 않았다. ABA처리 농도가 증가함에 따라 기공확산 저항성은 증가하고 증산율은 감소하는 경향을 보였다. 또, ABA처리는 묘의 건조 내성을 증가시켜 ABA가 첨가된 배양액에서 5일 또는 10일간 육묘한 묘를 -5bar 용액에 치상하였을 경우 대조구는 치상후 10시간 후부터 묘의 위조가 시작되어 20시간 후에는 모든 개체가 위조하였으나, ABA처리구는 치상 30시간 후부터 위조가 시작되어 50시간이 경과해서야 모든 개체가 위조되었다. 또, 수분 스트레스처리로 위조된 묘를 재관수하였을 경우 ABA 0.5와 $1mg{\cdot}L^{-1}$처리구는 100%, 그 이상 농도 처리구에서도 50%이상 회복되었으나, 무처리구의 경우는 전개체가 고사하였다. 이상의 결과 토마토 육묘과정에서 저농도의 ABA처리를 통한 근권부의 생장 촉진과 건조 내성 증진 가능성이 시사되었으나, 상업적 활용을 위해서는 추가적인 검토가 필요할 것으로 판단된다.

인삼종자의 휴비 및 발아에 대한 생리화학적 연구 (Studies on the Physiological Chemistry of Dormancy and Germination in Panax. ginseng Seeds 2. Changes in Abscisic acid content during Stratification of Seeds.)

  • 최선영;이강수
    • 한국작물학회지
    • /
    • 제32권3호
    • /
    • pp.277-286
    • /
    • 1987
  • 인삼종자의 휴비 및 발아기구의 해명을 위한 기초자료를 얻고자 종자의 후숙과정중 ABA의 함양변화를 조사하여 미숙배의 생장 및 발아와의 관계를 검토하였다. 1. 홍숙과에 있어서 ABA 함량은 과육이 종자나 내과피보다 현저하게 높았으며 이들 분포는 수분분포와 비슷하였다. 2. 개갑처리과정중 ABA 함량은 종자 및 내과피에서 모두 점차 감소되었는데 처리 90 일후 (개갑률 :96 %)에 종자에서는 90 pmol/gDW로 69 %가, 내과피에 서는 41 pmol/gDW로 80 %가 각각 감소되었다. 전 ABA에 대한 free 능의 비율은 종자에서는 계속 감소하였으나 내과피에서는 종자보다 높은 채로 거의 변화가 없었다. ABA 함량 감소와 미숙배생장과의 상관에서는 종자에서 유의성(r=-0.9737)이 크게 나타났다. 3. 개갑후 종자의 ABA함량은 4$^{\circ}C$와 15$^{\circ}C$에서 모두 점차 감소되었는데 처리 90 일후에 4$^{\circ}C$에서는 28 pmol/gDW로 69%가, 15$^{\circ}C$에서는 46pmo1/gDW로 49%가 각각 감소되었다. 전 ABA에 대한 free 능의 비율은 4$^{\circ}C$에서는 점차 증가되었으나 15$^{\circ}C$에서는 거의 변화가 없었다. ABA 함량 감소와 발아시에서는 거의 변화가 없었다. ABA함량 감소와 발아시와의 상관에서는 4$^{\circ}C$에서만 유의성(r=0.9852)이 있었으며 ABA 함량 감소와 1일 평균 발아율과의 상관에서는 4 $^{\circ}C$에서 부상관(r=-8548), 15$^{\circ}C$에서는 정상관 (r =0.9737)이 있었다. 4. 이상의 결과로 미루어 보아 개갑과정에서의 ABA의 함랸변화는 미숙배의 생장과 밀접한 관계가 있으며 개갑후 저온처리 과정에서의 발아능력(생리적휴면타파정도)은 ABA의 함량감소와는 직접적인 관계가 없는 것 같다.

  • PDF