DOI QR코드

DOI QR Code

Antagonistic Regulation of Arabidopsis Growth by Brassinosteroids and Abiotic Stresses

  • Chung, Yuhee (School of Biological Sciences, College of Natural Sciences, Seoul National University) ;
  • Kwon, Soon Il (Convergence Research Center for Functional Plant Products, Advanced Institutes of Convergence Technology) ;
  • Choe, Sunghwa (School of Biological Sciences, College of Natural Sciences, Seoul National University)
  • Received : 2014.05.15
  • Accepted : 2014.09.11
  • Published : 2014.11.30

Abstract

To withstand ever-changing environmental stresses, plants are equipped with phytohormone-mediated stress resistance mechanisms. Salt stress triggers abscisic acid (ABA) signaling, which enhances stress tolerance at the expense of growth. ABA is thought to inhibit the action of growth-promoting hormones, including brassinosteroids (BRs). However, the regulatory mechanisms that coordinate ABA and BR activity remain to be discovered. We noticed that ABA-treated seedlings exhibited small, round leaves and short roots, a phenotype that is characteristic of the BR signaling mutant, brassinosteroid insensitive1-9 (bri1-9). To identify genes that are antagonistically regulated by ABA and BRs, we examined published Arabidopsis microarray data sets. Of the list of genes identified, those upregulated by ABA but downregulated by BRs were enriched with a BRRE motif in their promoter sequences. After validating the microarray data using quantitative RT-PCR, we focused on RD26, which is induced by salt stress. Histochemical analysis of transgenic Arabidopsis plants expressing RD26pro:GUS revealed that the induction of GUS expression after NaCl treatment was suppressed by co-treatment with BRs, but enhanced by co-treatment with propiconazole, a BR biosynthetic inhibitor. Similarly, treatment with bikinin, an inhibitor of BIN2 kinase, not only inhibited RD26 expression, but also reduced the survival rate of the plant following exposure to salt stress. Our results suggest that ABA and BRs act antagonistically on their target genes at or after the BIN2 step in BR signaling pathways, and suggest a mechanism by which plants fine-tune their growth, particularly when stress responses and growth compete for resources.

Keywords

References

  1. Aida, M., Ishida, T., Fukaki, H., Fujisawa, H., and Tasaka, M. (1997). Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9, 841-857. https://doi.org/10.1105/tpc.9.6.841
  2. Bailey, T.L., and Elkan, C. (1995). The value of prior knowledge in discovering motifs with MEM. Proceedings/international conference on intelligent systems for molecular biology. ISMB 3, 21-29.
  3. Blazquez, M.A., Green, R., Nilsson, O., Sussman, M.R., and Weigel, D. (1998). Gibberellins promote flowering of arabidopsis by activating the LEAFY promoter. Plant Cell 10, 791-800. https://doi.org/10.1105/tpc.10.5.791
  4. Busk, P.K., and Pages, M. (1997). Protein binding to the abscisic acid-responsive element is independent of VIVIPAROUS1 in vivo. Plant Cell 9, 2261-2270. https://doi.org/10.1105/tpc.9.12.2261
  5. Choe, S. (2006). Brassinosteroid biosynthesis and inactivation. Physiol. Plant. 126, 539-548. https://doi.org/10.1111/j.1399-3054.2006.00681.x
  6. Choe, S., Fujioka, S., Noguchi, T., Takatsuto, S., Yoshida, S., and Feldmann, K.A. (2001). Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis. Plant J. 26, 573-582. https://doi.org/10.1046/j.1365-313x.2001.01055.x
  7. Choe, S., Schmitz, R.J., Fujioka, S., Takatsuto, S., Lee, M.O., Yoshida, S., Feldmann, K.A., and Tax, F.E. (2002). Arabidopsis brassinosteroid-insensitive dwarf12 mutants are semidominant and defective in a glycogen synthase kinase 3-like kinase. Plant Physiol. 130, 1506-1515. https://doi.org/10.1104/pp.010496
  8. Christianson, J.A., Dennis, E.S., Llewellyn, D.J., and Wilson, I.W. (2010). ATAF NAC transcription factors: regulators of plant stress signaling. Plant Sig. Behav. 5, 428-432. https://doi.org/10.4161/psb.5.4.10847
  9. Chung, Y., and Choe, S. (2013). The Regulation of Brassinosteroid Biosynthesis in Arabidopsis. Crit. Rev. Plant Sci. 32, 396-410. https://doi.org/10.1080/07352689.2013.797856
  10. Chung, Y., Maharjan, P.M., Lee, O., Fujioka, S., Jang, S., Kim, B., Takatsuto, S., Tsujimoto, M., Kim, H., Cho, S., et al. (2011). Auxin stimulates DWARF4 expression and brassinosteroid biosynthesis in Arabidopsis. Plant J. 66, 564-578. https://doi.org/10.1111/j.1365-313X.2011.04513.x
  11. Chung, Y., Choe, V., Fujioka, S., Takatsuto, S., Han, M., Jeon, J.S., Park, Y.I., Lee, K.O., and Choe, S. (2012). Constitutive activation of brassinosteroid signaling in the Arabidopsis elongated-D/bak1 mutant. Plant Mol. Biol. 80, 489-501. https://doi.org/10.1007/s11103-012-9963-5
  12. Clouse, S.D., and Sasse, J.M. (1998). BRASSINOSTEROIDS:Essential regulators of plant growth and development. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 427-451. https://doi.org/10.1146/annurev.arplant.49.1.427
  13. De Rybel, B., Audenaert, D., Vert, G., Rozhon, W., Mayerhofer, J., Peelman, F., Coutuer, S., Denayer, T., Jansen, L., Nguyen, L., et al. (2009). Chemical inhibition of a subset of Arabidopsis thaliana GSK3-like kinases activates brassinosteroid signaling. Chem. Biol. 16, 594-604. https://doi.org/10.1016/j.chembiol.2009.04.008
  14. Fanutti, C., Gidley, M.J., and Reid, J.S. (1993). Action of a pure xyloglucan endo-transglycosylase (formerly called xyloglucanspecific endo-($1{\rightarrow}4$)-beta-D-glucanase). from the cotyledons of germinated nasturtium seeds. Plant J. 3, 691-700. https://doi.org/10.1111/j.1365-313X.1993.00691.x
  15. Fujita, M., Fujita, Y., Maruyama, K., Seki, M., Hiratsu, K., Ohme-Takagi, M., Tran, L.S., Yamaguchi-Shinozaki, K., and Shinozaki, K. (2004). A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J. 39, 863-876. https://doi.org/10.1111/j.1365-313X.2004.02171.x
  16. Furihata, T., Maruyama, K., Fujita, Y., Umezawa, T., Yoshida, R., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2006). Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc. Natl Acad. Sci. USA 103, 1988-1993. https://doi.org/10.1073/pnas.0505667103
  17. Grill, E., and Himmelbach, A. (1998). ABA signal transduction. Curr. Opin. Plant Biol. 1, 412-418. https://doi.org/10.1016/S1369-5266(98)80265-3
  18. Guiltinan, M.J., Marcotte, W.R., Jr., and Quatrano, R.S. (1990). A plant leucine zipper protein that recognizes an abscisic acid response element. Science 250, 267-271. https://doi.org/10.1126/science.2145628
  19. Hartwig, T., Corvalan, C., Best, N.B., Budka, J.S., Zhu, J.Y., Choe, S., and Schulz, B. (2012). Propiconazole is a specific and accessible brassinosteroid (BR) biosynthesis inhibitor for Arabidopsis and maize. PLoS One 7, e36625. https://doi.org/10.1371/journal.pone.0036625
  20. He, J.X., Gendron, J.M., Sun, Y., Gampala, S.S., Gendron, N., Sun, C.Q., and Wang, Z.Y. (2005). BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science 307, 1634-1638. https://doi.org/10.1126/science.1107580
  21. Hobo, T., Kowyama, Y., and Hattori, T. (1999). A bZIP factor, TRAB1, interacts with VP1 and mediates abscisic acid-induced transcription. Proc. Natl Acad. Sci. USA 96, 15348-15353. https://doi.org/10.1073/pnas.96.26.15348
  22. Jensen, M.K., Lindemose, S., de Masi, F., Reimer, J.J., Nielsen, M., Perera, V., Workman, C.T., Turck, F., Grant, M.R., Mundy, J., et al. (2013). ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene NCED3 in Arabidopsis thaliana. FEBS Open Bio. 3, 321-327. https://doi.org/10.1016/j.fob.2013.07.006
  23. Jin, H., Yan, Z., Nam, K.H., and Li, J. (2007). Allele-specific suppression of a defective brassinosteroid receptor reveals a physiological role of UGGT in ER quality control. Mol. Cell 26, 821-830. https://doi.org/10.1016/j.molcel.2007.05.015
  24. Kang, J.Y., Choi, H.I., Im, M.Y., and Kim, S.Y. (2002). Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14, 343-357. https://doi.org/10.1105/tpc.010362
  25. Kim, H.B., Kwon, M., Ryu, H., Fujioka, S., Takatsuto, S., Yoshida, S., An, C.S., Lee, I., Hwang, I., and Choe, S. (2006). The regulation of DWARF4 expression is likely a critical mechanism in maintaining the homeostasis of bioactive brassinosteroids in Arabidopsis. Plant Physiol. 140, 548-557. https://doi.org/10.1104/pp.105.067918
  26. Kim, T.W., Guan, S., Sun, Y., Deng, Z., Tang, W., Shang, J.X., Sun, Y., Burlingame, A.L., and Wang, Z.Y. (2009). Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nat. Cell Biol. 11, 1254-1260. https://doi.org/10.1038/ncb1970
  27. Kim, S.Y., Kim, B.H., Lim, C.J., Lim, C.O., and Nam, K.H. (2010). Constitutive activation of stress-inducible genes in a brassinosteroid-insensitive 1 (bri1) mutant results in higher tolerance to cold. Physiol. Plant. 138, 191-204. https://doi.org/10.1111/j.1399-3054.2009.01304.x
  28. Kim, B., Fujioka, S., Kwon, M., Jeon, J., and Choe, S. (2013). Arabidopsis Brassinosteroid-overproducing gulliver3-D/dwarf4-Dmutants exhibit altered responses to Jasmonic acid and pathogen. Plant Cell Rep. 32, 1139-1149. https://doi.org/10.1007/s00299-012-1381-2
  29. Kim, B., Jeong, Y.J., Corvalan, C., Fujioka, S., Cho, S., Park, T., and Choe, S. (2014). Darkness and gulliver2/phyB mutation decrease the abundance of phosphorylated BZR1 to activate brassinosteroid signaling in Arabidopsis. Plant J. 77, 737-747. https://doi.org/10.1111/tpj.12423
  30. Kinoshita, T., Cano-Delgado, A., Seto, H., Hiranuma, S., Fujioka, S., Yoshida, S., and Chory, J. (2005). Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature 433, 167-171. https://doi.org/10.1038/nature03227
  31. Klein, P.S., and Melton, D.A. (1996). A molecular mechanism for the effect of lithium on development. Proc. Natl Acad. Sci. USA 93, 8455-8459. https://doi.org/10.1073/pnas.93.16.8455
  32. Lee, S.C., and Luan, S. (2012). ABA signal transduction at the crossroad of biotic and abiotic stress responses. Plant Cell. Environ. 35, 53-60. https://doi.org/10.1111/j.1365-3040.2011.02426.x
  33. Li, J., and Nam, K.H. (2002). Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase. Science 295, 1299-1301.
  34. Li, J., Nam, K.H., Vafeados, D., and Chory, J. (2001). BIN2, a new brassinosteroid-insensitive locus in Arabidopsis. Plant Physiol. 127, 14-22. https://doi.org/10.1104/pp.127.1.14
  35. Ma, Y., Szostkiewicz, I., Korte, A., Moes, D., Yang, Y., Christmann, A., and Grill, E. (2009). Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324, 1064-1068.
  36. Maharjan, P.M., and Choe, S. (2011). High temperature stimulates DWARF4 (DWF4). Expression to increase hypocotyl elongation in Arabidopsis. J. Plant Biol. 54, 425-429. https://doi.org/10.1007/s12374-011-9183-6
  37. Meister, R.J., Williams, L.A., Monfared, M.M., Gallagher, T.L., Kraft, E.A., Nelson, C.G., and Gasser, C.S. (2004). Definition and interactions of a positive regulatory element of the Arabidopsis INNER NO OUTER promoter. Plant J. 37, 426-438. https://doi.org/10.1046/j.1365-313X.2003.01971.x
  38. Monfared, M.M., Simon, M.K., Meister, R.J., Roig-Villanova, I., Kooiker, M., Colombo, L., Fletcher, J.C., and Gasser, C.S. (2011). Overlapping and antagonistic activities of BASIC PENTACYSTEINE genes affect a range of developmental processes in Arabidopsis. Plant J. 66, 1020-1031. https://doi.org/10.1111/j.1365-313X.2011.04562.x
  39. Mundy, J., Yamaguchi-Shinozaki, K., and Chua, N.H. (1990). Nuclear proteins bind conserved elements in the abscisic acidresponsive promoter of a rice rab gene. Plant Cell. Environ. 87, 1406-1410.
  40. Nemhauser, J.L., Hong, F., and Chory, J. (2006). Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell 126, 467-475. https://doi.org/10.1016/j.cell.2006.05.050
  41. Noguchi, T., Fujioka, S., Choe, S., Takatsuto, S., Yoshida, S., Yuan, H., Feldmann, K.A., and Tax, F.E. (1999). Brassinosteroidinsensitive dwarf mutants of Arabidopsis accumulate brassinosteroids. Plant Physiol. 121, 743-752. https://doi.org/10.1104/pp.121.3.743
  42. Ooka, H., Satoh, K., Doi, K., Nagata, T., Otomo, Y., Murakami, K., Matsubara, K., Osato, N., Kawai, J., Carninci, P., et al. (2003). Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA research: an international journal for rapid publication of reports on genes and genomes 10, 239-247. https://doi.org/10.1093/dnares/10.6.239
  43. Park, S.Y., Fung, P., Nishimura, N., Jensen, D.R., Fujii, H., Zhao, Y., Lumba, S., Santiago, J., Rodrigues, A., Chow, T.F., et al. (2009). Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324, 1068-1071.
  44. Peng, P., Yan, Z., Zhu, Y., and Li, J. (2008). Regulation of the Arabidopsis GSK3-like kinase BRASSINOSTEROID-INSENSITIVE 2 through proteasome-mediated protein degradation. Mol. Plant 1, 338-346. https://doi.org/10.1093/mp/ssn001
  45. Piao, H.L., Lim, J.H., Kim, S.J., Cheong, G.W., and Hwang, I. (2001). Constitutive over-expression of AtGSK1 induces NaCl stress responses in the absence of NaCl stress and results in enhanced NaCl tolerance in Arabidopsis. Plant J. 27, 305-314. https://doi.org/10.1046/j.1365-313x.2001.01099.x
  46. Rozhon, W., Mayerhofer, J., Petutschnig, E., Fujioka, S., and Jonak, C. (2010). ASKtheta, a group-III Arabidopsis GSK3, functions in the brassinosteroid signalling pathway. Plant J. 62, 215-223. https://doi.org/10.1111/j.1365-313X.2010.04145.x
  47. Russinova, E., Borst, J.W., Kwaaitaal, M., Cano-Delgado, A., Yin, Y., Chory, J., and de Vries, S.C. (2004). Heterodimerization and endocytosis of Arabidopsis brassinosteroid receptors BRI1 and AtSERK3 (BAK1).. Plant Cell 16, 3216-3229. https://doi.org/10.1105/tpc.104.025387
  48. Sakuma, Y., Maruyama, K., Osakabe, Y., Qin, F., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2006). Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18, 1292-1309. https://doi.org/10.1105/tpc.105.035881
  49. Schmidt, R., Schippers, J.H., Mieulet, D., Obata, T., Fernie, A.R., Guiderdoni, E., and Mueller-Roeber, B. (2013). MULTIPASS, a rice R2R3-type MYB transcription factor, regulates adaptive growth by integrating multiple hormonal pathways. Plant J. 76, 258-273.
  50. Shinozaki, K., and Yamaguchi-Shinozaki, K. (2007). Gene networks involved in drought stress response and tolerance. J. Exp. Bot. 58, 221-227.
  51. Sing, A., Pannell, D., Karaiskakis, A., Sturgeon, K., Djabali, M., Ellis, J., Lipshitz, H.D., and Cordes, S.P. (2009). A vertebrate Polycomb response element governs segmentation of the posterior hindbrain. Cell 138, 885-897. https://doi.org/10.1016/j.cell.2009.08.020
  52. Stambolic, V., Ruel, L., and Woodgett, J.R. (1996). Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr. Biol. 6, 1664-1668. https://doi.org/10.1016/S0960-9822(02)70790-2
  53. Steber, C.M., and McCourt, P. (2001). A role for brassinosteroids in germination in Arabidopsis. Plant Physiol. 125, 763-769. https://doi.org/10.1104/pp.125.2.763
  54. Sun, Y., Fan, X.Y., Cao, D.M., Tang, W., He, K., Zhu, J.Y., He, J.X., Bai, M.Y., Zhu, S., Oh, E., et al. (2010). Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Dev. Cell 19, 765-777. https://doi.org/10.1016/j.devcel.2010.10.010
  55. Sun, Y., Han, Z., Tang, J., Hu, Z., Chai, C., Zhou, B., and Chai, J. (2013). Structure reveals that BAK1 as a co-receptor recognizes the BRI1-bound brassinolide. Cell Res. 23, 1326-1329. https://doi.org/10.1038/cr.2013.131
  56. Tang, W., Kim, T.W., Oses-Prieto, J.A., Sun, Y., Deng, Z., Zhu, S., Wang, R., Burlingame, A.L., and Wang, Z.Y. (2008). BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science 321, 557-560. https://doi.org/10.1126/science.1156973
  57. Tran, L.S., Nakashima, K., Sakuma, Y., Simpson, S.D., Fujita, Y., Maruyama, K., Fujita, M., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2004). Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16, 2481-2498. https://doi.org/10.1105/tpc.104.022699
  58. Uno, Y., Furihata, T., Abe, H., Yoshida, R., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2000). Arabidopsis basic leucine zipper transcription factors involved in an abscisic aciddependent signal transduction pathway under drought and highsalinity conditions. Proc. Natl Acad. Sci. USA 97, 11632-11637. https://doi.org/10.1073/pnas.190309197
  59. Vriet, C., Russinova, E., and Reuzeau, C. (2013). From squalene to brassinolide: the steroid metabolic and signaling pathways across the plant kingdom. Mol. Plant 6, 1738-1757. https://doi.org/10.1093/mp/sst096
  60. Wang, X., and Chory, J. (2006). Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling, from the plasma membrane. Science 313, 1118-1122. https://doi.org/10.1126/science.1127593
  61. Wang, X., Kota, U., He, K., Blackburn, K., Li, J., Goshe, M.B., Huber, S.C., and Clouse, S.D. (2008). Sequential transphosphorylation of the BRI1/BAK1 receptor kinase complex impacts early events in brassinosteroid signaling. Dev. Cell 15, 220-235. https://doi.org/10.1016/j.devcel.2008.06.011
  62. Yamaguchi-Shinozaki, K., Mundy, J., and Chua, N.H. (1990). Four tightly linked rab genes are differentially expressed in rice. Plant Mol. Biol. 14, 29-39. https://doi.org/10.1007/BF00015652
  63. Yan, Z., Zhao, J., Peng, P., Chihara, R.K., and Li, J. (2009). BIN2 functions redundantly with other Arabidopsis GSK3-like kinases to regulate brassinosteroid signaling. Plant Physiol. 150, 710-721. https://doi.org/10.1104/pp.109.138099
  64. Zhang, S., Cai, Z., and Wang, X. (2009). The primary signaling outputs of brassinosteroids are regulated by abscisic acid signaling. Proc. Natl Acad. Sci. USA 106, 4543-4548. https://doi.org/10.1073/pnas.0900349106

Cited by

  1. RD26 mediates crosstalk between drought and brassinosteroid signalling pathways vol.8, 2017, https://doi.org/10.1038/ncomms14573
  2. Brassinosteroid’s multi-modular interaction with the general stress network customizes stimulus-specific responses in Arabidopsis vol.250, 2016, https://doi.org/10.1016/j.plantsci.2016.06.007
  3. Barley Brassinosteroid Mutants Provide an Insight into Phytohormonal Homeostasis in Plant Reaction to Drought Stress vol.7, 2016, https://doi.org/10.3389/fpls.2016.01824
  4. Expression of the Floral Repressor miRNA156 is Positively Regulated by the AGAMOUS-like Proteins AGL15 and AGL18 vol.38, pp.3, 2015, https://doi.org/10.14348/molcells.2015.2311
  5. Transcriptional networks in leaf senescence vol.27, 2015, https://doi.org/10.1016/j.pbi.2015.06.018
  6. Litchi Fruit LcNAC1 is a Target of LcMYC2 and Regulator of Fruit Senescence Through its Interaction with LcWRKY1 vol.58, pp.6, 2017, https://doi.org/10.1093/pcp/pcx054
  7. Understanding brassinosteroid-regulated mechanisms to improve stress tolerance in plants: a critical review vol.24, pp.19, 2017, https://doi.org/10.1007/s11356-017-9163-6
  8. Overexpression of the vascular brassinosteroid receptor BRL3 confers drought resistance without penalizing plant growth vol.9, pp.1, 2018, https://doi.org/10.1038/s41467-018-06861-3
  9. Crosstalk of the Brassinosteroid Signalosome with Phytohormonal and Stress Signaling Components Maintains a Balance between the Processes of Growth and Stress Tolerance vol.19, pp.9, 2018, https://doi.org/10.3390/ijms19092675
  10. Exogenous brassinosteroid application delays senescence and promotes hyponasty in Carica papaya L. leaves vol.30, pp.3, 2018, https://doi.org/10.1007/s40626-018-0114-5
  11. Overexpression of SoCYP85A1 , a Spinach Cytochrome p450 Gene in Transgenic Tobacco Enhances Root Development and Drought Stress Tolerance vol.8, pp.None, 2017, https://doi.org/10.3389/fpls.2017.01909
  12. Brassinosteroids: A Promising Option in Deciphering Remedial Strategies for Abiotic Stress Tolerance in Rice vol.8, pp.None, 2014, https://doi.org/10.3389/fpls.2017.02151
  13. Cross-talk of Brassinosteroid signaling in controlling growth and stress responses vol.474, pp.16, 2014, https://doi.org/10.1042/bcj20160633
  14. Overexpression of the Wild Soybean R2R3-MYB Transcription Factor GsMYB15 Enhances Resistance to Salt Stress and Helicoverpa Armigera in Transgenic Arabidopsis vol.19, pp.12, 2018, https://doi.org/10.3390/ijms19123958
  15. Brassinosteroid signaling in plant development and adaptation to stress vol.146, pp.5, 2014, https://doi.org/10.1242/dev.151894
  16. Enhanced brassinosteroid signaling intensity via SlBRI1 overexpression negatively regulates drought resistance in a manner opposite of that via exogenous BR application in tomato vol.138, pp.None, 2014, https://doi.org/10.1016/j.plaphy.2019.02.014
  17. 24-Epibrassinolide alters DNA cytosine methylation of Linum usitatissimum L. under salinity stress vol.139, pp.None, 2014, https://doi.org/10.1016/j.plaphy.2019.04.010
  18. Melatonin Deficiency Confers Tolerance to Multiple Abiotic Stresses in Rice via Decreased Brassinosteroid Levels vol.20, pp.20, 2019, https://doi.org/10.3390/ijms20205173
  19. Transcription Factors Associated with Leaf Senescence in Crops vol.8, pp.10, 2014, https://doi.org/10.3390/plants8100411
  20. GSK3‐like kinase BIN2 phosphorylates RD26 to potentiate drought signaling in Arabidopsis vol.100, pp.5, 2014, https://doi.org/10.1111/tpj.14484
  21. Coping With Water Limitation: Hormones That Modify Plant Root Xylem Development vol.11, pp.None, 2014, https://doi.org/10.3389/fpls.2020.00570
  22. The physiology of plant responses to drought vol.368, pp.6488, 2014, https://doi.org/10.1126/science.aaz7614
  23. Different strategies of strigolactone and karrikin signals in regulating the resistance of Arabidopsis thaliana to water-deficit stress vol.15, pp.9, 2014, https://doi.org/10.1080/15592324.2020.1789321
  24. Suppression of Rice Cryptochrome 1b Decreases Both Melatonin and Expression of Brassinosteroid Biosynthetic Genes Resulting in Salt Tolerance vol.26, pp.4, 2014, https://doi.org/10.3390/molecules26041075
  25. Versatile Physiological Functions of Plant GSK3-Like Kinases vol.12, pp.5, 2014, https://doi.org/10.3390/genes12050697
  26. PHYTOCHROME INTERACTING FACTORS PIF4 and PIF5 promote heat stress induced leaf senescence in Arabidopsis vol.72, pp.12, 2021, https://doi.org/10.1093/jxb/erab158
  27. Brassinosteroids as a multidimensional regulator of plant physiological and molecular responses under various environmental stresses vol.28, pp.33, 2021, https://doi.org/10.1007/s11356-021-15087-8
  28. Regulatory short RNAs: A decade's tale for manipulating salt tolerance in plants vol.173, pp.4, 2021, https://doi.org/10.1111/ppl.13492
  29. Genome-Wide Identification and Characterization of DnaJ Gene Family in Grape (Vitis vinifera L.) vol.7, pp.12, 2014, https://doi.org/10.3390/horticulturae7120589