• Title/Summary/Keyword: Abrasion volume

Search Result 39, Processing Time 0.026 seconds

Study of industrial water calculation improvement by use Alternative Energy (대체에너지 사용시 공업용수 순환 개선을 위한 연구)

  • Choi, Do-Sun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.4 no.4
    • /
    • pp.307-310
    • /
    • 2011
  • In this paper we use general centrifugal pump instead of screw pump in alternative Energy system. This alternative Energy system with screw pump compared the volume flour of water pumping and efficiency. Screw pump is designed that it rotated without a toque in another Shaft. Futhermore it have noise and abrasion, The pump used in high pressure with fast rotate.

Mechanical Properties and Wear Performance of the Al7075 Composites Reinforced with Bimodal Sized SiC Particles (이종입자 강화 SiC/Al7075 금속복합재료의 압축특성 및 마모특성 연구)

  • Lee, Donghyun;Cho, Seungchan;Kim, Yangdo;Lee, Sang-Kwan;Lee, Sang-Bok;Jo, Ilguk
    • Composites Research
    • /
    • v.30 no.5
    • /
    • pp.310-315
    • /
    • 2017
  • In this study, we have investigated microstructure, mechanical properties and wear characteristic of aluminum metal matrix composites with a high volume fraction and uniformly dispersed SiC particles which produced by a liquid pressing process. The volume fraction of bimodal SiC/Al7075 composite was 12% higher than that of the monomodal SiC/Al7075 composite and a compressive strength is increased about 200 MPa. As a result of the abrasion test, the wear width and depth of the bimodal SiC/Al7075 composite were $285.1{\mu}m$ and $0.45{\mu}m$, respectively. The coefficient of friction of bimodal SiC/Al7075 was 0.16.

Interfacial Phenomena of Lignocellulose Fiber/Thermoplastic Polymer Composites (리그노셀룰로오스 섬유/열가소성 고분자 복합재의 계면 현상)

  • Son, Jungil;Yang, Han-Seung;Kim, Hyun-Joong
    • Journal of Adhesion and Interface
    • /
    • v.3 no.4
    • /
    • pp.44-52
    • /
    • 2002
  • Composite materials are created by combining two or more component to achieve desired properties which could not be obtained with the separate components. The use of reinforcing fillers, which can reduce material costs and improve certain properties, is increasing in thermoplastic polymer composites. Currently, various inorganic fillers such as talc, mica, clay, glass fiber and calcium carbonate are being incorporated into thermoplastic composites. Nevertheless, lignocellulose fibers have drawn attention due to their abundant availability, low cost and renewable nature. In recent, interest has grown in composites made from lignocellulose fiber in thermoplastic polymer matrices, particularly for low cost/high volume applications. In addition to high specific properties, lignocellulose fibers offer a number of benefits for lignocellulose fiber/thermoplastic polymer composites. These include low hardness, which minimize abrasion of the equipment during processing, relatively low density, biodegradability, and low cost on a unit-volume basis. In spite of the advantage mentioned above, the use of lignocellulose fibers in thermoplastic polymer composites has been plagued by difficulties in obtaining good dispersion and strong interfacial adhesion because lignocellulose fiber is hydrophilic and thermoplastic polymer is hydrophobic. The application of lignocellulose fibers as reinforcements in composite materials requires, just as for glass-fiber reinforced composites, a strong adhesion between the fiber and the matrix regardless of whether a traditional polymer matrix, a biodegradable polymer matrix or cement is used. Further this article gives a survey about physical and chemical treatment methods which improve the fiber matrix adhesion, their results and effects on the physical properties of composites. Coupling agents in lignocellulose fiber and polymer composites play a very important role in improving the compatibility and adhesion between polar lignocellulose fiber and non-polar polymeric matrices. In this article, we also review various kinds of coupling agent and interfacial mechanism or phenomena between lignocellulose fiber and thermoplastic polymer.

  • PDF

An Investigation for Improvement of Grain Shape and Very Fine Sand of Crushed Sand (부순모래의 입형 및 미립분 함유량 개선을 위한 기술 검토)

  • Kim, Ki-Hoon;Yoon, Seob;Lee, Yong-Sung;Yoon, Gi-Won;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2004.05a
    • /
    • pp.71-74
    • /
    • 2004
  • Recently, with the wide shortage of natural sand resources, it has been increasingly used the crushed sand. rushed sand is made by the process of crushing the rocks artificially, which has different particle properties compared with that of natural sand. Because such different panicle properties of crushed sand results in an undesirable effects of concrete. improvement technology for crushed sand particle properties like grain shape and fine particle needed during the manufacturing process. In this paper, improvement technology of grain shape and fine particle is reported. According to test results, adequate investment for manufacturing facilities like impact crusher and abrasion test machine is required to meet the advanced grain shape and grading of crushed sand. Based on the investigation of test result, mixing of natural land and crushed sand with given proportion can achieve the improvement of grain shape. For improving excessive fine panicle contents. current manufacturing system also can enhance the existing technology for fine particle without additional investment. It can be concluded that adequate investment and research can improve the quality of crushed sand.

  • PDF

Valveless piezoelectric micro-pump exploiting two sided disk type vibrator (디스크형 진동자의 연동 운동을 이용하는 밸브리스 마이크로 압전 펌프)

  • Oh, Jin-Heon;Lim, Jong-Nam;Jeong, Eui-Hwan;Lim, Kee-Joe
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.159-159
    • /
    • 2009
  • Existence of physical moving parts (ex. check valve) produces several problems (mechanical abrasion, deterioration of reliability, limited temperature performances etc.) in driving pumps. To overcome such problems, we proposed a valveless piezoelectric micro-pump which has new type volume transferring mechanism. The proposed micro-pump has a double faced disk type vibrator that can generate peristaltic motion formed by traveling wave in each surface of a disk. This type of micro-pump is able to apply to a fluid supply system that provides two different kinds of fluid simultaneously. In this paper, we propose a simple and novel design of piezoelectric micro-pump that is peristaltically by piezoelectric actuators and allows the removal of the need for valves of other physically moving parts. The finite elements analysis on the proposed pump model was carried out to verify its operation principle using the commercial analysis software.

  • PDF

Physuical characteristics of crushed aggregates in Korea (한반도 산림골재의 물성특성)

  • 양동윤
    • Economic and Environmental Geology
    • /
    • v.32 no.1
    • /
    • pp.1-11
    • /
    • 1999
  • In the last decade, the supply of natural aggregates has been continuously increased due to the other types of aggregates. In general, aggregates constitute 70-80% of the total volume of concrete, so the quality of aggregates is main factor controlling physical characteristics of concrete. For this reason, physical properties of aggregate according to different rock types were studied. The majority of crushed aggregates is taken out of granite, gneiss, sandstone, andesite, basalt and so forth. The physical properties of these rock types were tested and most of them fell within the acceptable limit on the base of Korean standard regulation. The major lithology of the crushed aggregates is granite and gneiss, both of which are marked for more than 50% of total lithology thpes in Korea. A to the physical properties of granite, the high specific gravity coincides with low porosity, low absorption ratio, while the abrasion and soundness index show, in general, no specific trend. It has been assumed that slight differences of the physical properties of granite aggregates are related with those of the mineral composition, grain size, and so on. In comparison to granite, the physical properties of gneiss have little correlation one after another. This trend is related to different mineral composition, grain size and typical sheet fractures typically prevailing in the texture of gneiss. Spatial pattern of physical properties shows that high specific gravity of granite coincides only with low porosity and absorption ratio in all provinces except Cheolla province, and high specific gravity of gneiss coincides with low porosity and absorption ratio only in Cheolla and Gandwon provinces.

  • PDF

Composite Coating of Nickel-Boron Nitride-Phosphours and Nickel-Boron Nitride-Boron Ternary System on Aluminum (알루미늄에 니켈-질화붕소-인과 니켈-질화붕소-붕소의 3원계 복합도금)

  • Kuak Woo-Sup;Yoon, Byung-Ha;Kim, Dai-Ryong
    • Journal of the Korean institute of surface engineering
    • /
    • v.19 no.3
    • /
    • pp.83-91
    • /
    • 1986
  • Codeposited of boron nitride(BN) particle dispersed into electroless nickel-phosphours (Ni-P) and nickel-boron(Ni-B) platings were studied for the purpose of developing the wear resistance and lubricity. BN can be codeposited from electroless nickel plating bath with $NaH_2PO_2$ and $NaBH_4$ as the reducing agents. Most dispersolids were distributed uniformly in the Ni-P and Ni-B matrix. Abrasion loss decreased with increasing amount of codeposits and reached a constant value 2.4 percent by volume percent of BN particle. The wear resistance and the friction coefficient of the heat treated BN composite coatings were improved about three times than that of as-coatings. The BN composite coatings were more wear resistance than hard chromium. Ni-B-BN composite coatings showed lower wear resistance and friction coefficient than Ni-P-BN. The BN content of the deposite was found to be 2.4 v/o for these optium conditions.

  • PDF

Microstructure and Characterization of Overlay Welding Layer using Fe-based Composite Powders (철계 복합 분말로 제조된 오버레이 용접층의 미세조직 및 특성)

  • Min, Hong;Lee, Jong-Jae;Lee, Jin Kyu
    • Journal of Powder Materials
    • /
    • v.26 no.3
    • /
    • pp.214-219
    • /
    • 2019
  • In this study, the microstructure and characterization of an overlay welding layer using Fe-based composite powders are reported. The effects of the number of passes and composition of powders on the microstructure and mechanical properties are investigated in detail. The welding wire and powders are deposited twice on a stainless-steel rod using a laser overlay welding process. The microstructure and structural characterization are performed by scanning electron microscopy and X-ray diffraction. The mechanical properties of the first and second overlay layers are analyzed through the micro-Vickers-hardness tester and abrasion wear tester. In the second overlay layer, the hardness and specific wear are approximately 840 Hv and $2.0{\times}10^{-5}mm^3/Nm$, respectively. It is suggested that the increase of the volume fractions of $(Cr,Fe)_7C_3$ and NbC phases in the second welding layer enhances the hardness and wear resistance.

COMPARISON OF MECHANICAL PROPERTIES IN 4 INDIRECT COMPOSITE RESIN (4종의 간접법용 복합 레진의 기계적 특성 비교)

  • Kim, Kil-Soo;Yoon, Tae-Ho;Song, Kwang-Yeob;Ahn, Seung-Geun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.1
    • /
    • pp.21-33
    • /
    • 2007
  • Statement of problem: The esthetic component of dental care has become increasingly more important, while new tooth-colored materials are continually marketed. Various new indirect composite materials have been developed with required advantages. The most recent development in the indirect composites has been the introduction of the second-generation laboratory composite or poly-glass materials. They are processed by different laboratory techniques based on combinations of heat, pressure, vacuum and light polymerization. Although, second generation products became available in 1995, their characteristics and clinical performance have not been adequately investigated. Purpose: The aim of this study was to measure the mechanical properties of the second generation indirect resin system and compare these with an existing universal direct composite resin. Material and method: In this study four indirect composite material (Adoro LC, BelleGlass HP, Tescera, Synfony) were tested for flexural strength, wear resistance, hardness and their degree of conversion against Z250, a light cure direct composite. Results: Within the limitations of this study, the following conclusions were drawn: 1. From the abrasion wear result, Adoro showed the least volume loss while Synfony showed the greatest volume loss. Z250 and BelleGlass HP didn't show significant difference (p>0.05), but they showed significant difference with other groups (p<0.05). From the attrition wear, BelleGlass HP showed the least volume loss and it didn’t show significant difference with Tescera (p>0.05). While Synfony showed the greatest volume loss that it showed significant difference with other groups (p>0.05). 2. Mean values of flexural strength by means of three point bending test was in the order of Z250, Adoro, Belleglass HP, Tescera and Synfony. Mean elastic modulus was in the order of Z250, BelleGlass HP, Tescera, Adoro and Synfony. 3. The result of Vicker‘s microhardness value showed that significantly higher value in Z250 (p<0.05), and is in the order of BelleGlass HP, Tescera, Adoro and Synfony. 4. The degree of conversion measured by FT-IR showed significantly higher value in BelleGlass HP (p<0.05), and is in the order of Adoro, Synfony, Tescera and Z250. Conclusion: Significant differences were found in the flexural strength, wear resistance, hardness and their degree of conversion.

A Study on the Manufacture of WC MMCs by In-situ Reaction Process(1);The Formation Mechanism of Interfacial Reaction Layer in Cast-bonded Cast iron/W wire and Its Structure (기지내 반응법에 의한 WC 복합재료의 제조에 관한 연구(1);주조접합된 주철/텅스텐 와이어의 계면반응층 생성기구와 조직특성)

  • Park, Heung-Il;Kim, Chang-Up;Huh, Bo-Young;Lee, Sung-Youl;Kim, Chang-Gyu
    • Journal of Korea Foundry Society
    • /
    • v.15 no.3
    • /
    • pp.272-282
    • /
    • 1995
  • Iron-based metal matrix composites have been recently investigated for the use of inexpensive abrasion resistance material. This paper carried out to investigate the in-situ reaction effects on the microstructural characteristics and the formation mechanism of tungsten carbides in a white cast iron matrix. The specimens of Fe-3.2%C-2.8%Si alloy cast-bonded with tungsten wire were cast in the metal mold and isothermally heat treated at $950^{\circ}C$ up to 48 hours. The typical microstructure of heat treated specimens showed the reaction layer of WC at the interface of tungsten wire and the carbon depletion zone between the WC layer and the matrix. During the formation of WC layer, if the carbon supply is insufficient due to the decarburization of matrix or the isolation of matrix by cast-bonded W wires, the reaction layer develops coarse hexagonal crystalline WC. From the microstructural investigation, it was found that the volume of WC layer and the carbon depletion zone increased linearly with the isothermal heat treating time. This results supported that the formation rate of WC in the white cast iron matrix is controlled by the interfacial reaction with a constant reaction rate.

  • PDF