• Title/Summary/Keyword: Abnormal Behavior Detection

Search Result 131, Processing Time 0.031 seconds

Abnormal Crowd Behavior Detection in Video Surveillance System (영상 감시 시스템에서의 비정상 집단행동 탐지)

  • Park, Seung-Jin;Oh, Seung-Geun;Kang, Bong-Su;Park, Dai-Hee
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06c
    • /
    • pp.347-350
    • /
    • 2011
  • 감시카메라 환경에서의 비정상 집단행동 탐지란 감시카메라로부터 유입되는 영상에서 다중 객체가 위험에 처한 상황을 신속하고 정확하게 탐지 및 인식하는 분야를 말한다. 본 논문에서는 CCTV 등과 같은 감시카메라 환경에서 움직임 벡터와 SVDD를 이용하여 집단내의 비정상 상황을 탐지하는 프로토타입 시스템을 제안한다. 제안된 시스템은 움직임 벡터를 이용하여 영상내의 움직임 정보를 추출 표현하였으며, 비정상 집단행동의 판별 문제를 실용적 차원의 단일 클래스 분류 문제로 재해석하여 단일 클래스 SVM의 대표적 모델인 SVDD를 탐지자로 설계하였다. 공개적으로 사용 가능한 벤치마크 데이터 셋인 PETS 2009와 UMN을 이용하여 본 논문에서 제안한 비정상 집단행동 탐지 시스템의 성능을 실험적으로 검증한다.

Comparative Analysis of Unsupervised Learning Algorithm for Generating Network based Anomaly Behaviors Detection Model (네트워크기반 비정상행위 탐지모델 생성을 위한 비감독 학습 알고리즘 비교분석)

  • Lee, Hyo-Seong;Sim, Chul-Jun;Won, Il-Yong;Lee, Chang-Hun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.11b
    • /
    • pp.869-872
    • /
    • 2002
  • 네트워크 기반 침입탐지시스템은 연속적으로 발생하는 패킷의 무손실 축소와, 패킷으로 정상 또는 비정상 행위패턴을 정확히 모델링한 모델 생성이 전체성능을 판단하는 중요한 요소가 된다. 네트워크 기반 비정상행위 판정 침입탐지시스템에서는 이러한 탐지모델 구축을 위해 주로 감독학습 알고리즘을 사용한다. 본 논문은 탐지모델 구축에 사용하는 감독 학습 방식이 가지는 문제점을 지적하고, 그에 대한 대안으로 비감독 학습방식의 학습알고리즘을 제안한다. 감독 학습을 사용하여 탐지모델을 구축하기 위해서는 정상행위의 패킷을 취합해야 하는 사전 부담이 있는 반면에 비감독 학습을 사용하게 되면 이러한 사전작업 없이 탐지모델을 구축할 수 있다. 본 논문에서는 비감독학습 알고리즘을 비교 분석하기 위해서 COBWEB, k-means, Autoclass 알고리즘을 사용했으며, 성능을 평가하기 위해서 비정상행위도(Abnormal Behavior Level)를 계산하여 에러율을 구하였다.

  • PDF

Development of a Fuzzy Logic-based Fault Identification System In Distribution System (퍼지 논리 적용에 의한 배전계통의 고장 검출 시스템 개발)

  • Kim, Chang-Jong;Oh, Yong-Taek
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.737-739
    • /
    • 1996
  • Abnormal conditions and disturbances in distribution system cause an immediate influence to the customers. Conventional detection schemes for the distribution abnormalities have been applied in limited extents mainly because of their low reliability. In this paper, we developed a disturbance identification system which monitors the load level after a transient, checks the harmonic behavior of the load, and finally makes decision on the cause of the disturbance. This system identifies and discriminates overcurrent faults, arcing ground faults, recloser activities, and foreign object or tree contacts. In the implementation of the identification system, we applied fuzzy logic to better represent some variables whose Quantities are expressed only in non-numerical terms.

  • PDF

A Study on the Usage Pattern Based Detection of Abnormal Behavior in BYOD Environment using Regression (BYOD 환경에서 회귀분석을 활용한 비정상 행위 탐지 방법에 관한 연구)

  • Jurn, Jee-Soo;Kim, Tae-Eun;Jo, Chang-Min;Kim, Hwan-Kuk;Son, Kyung-Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.646-647
    • /
    • 2015
  • 정보통신의 발달로 개인의 모바일 기기를 업무에 활용하는 BYOD(Bring Your Own Device) 시대가 도래 하면서 기업들은 기밀정보 유출 방지, 접근 제어 및 효율적인 자원 관리를 위해 다양한 시스템을 도입하였다. 하지만 접근제어 정책은 획일화 되어 사용자에게 적용되고 있고, 기기의 잦은 분실과 도난, 낮은 보안성 등으로 인한 보안 위협이 존재하기 때문에 BYOD는 적극적으로 도입되지 못하고 있다. 따라서 개인화된 상황정보 수집을 통하여 유연한 정책 설정 및 비정상 사용자를 탐지 및 통제하는 방법이 필요하다. 본 논문에서는 BYOD 환경에서 발생할 수 있는 비정상 행위를 탐지하기 위해 사용자의 서비스 이용속도 분석하여 비정상 행위를 탐지하는 방안에 대해 논의한다.

Abnormal behavior detection using Gaussian Mixture Model and Optical Flow (가우시안 혼합 모델과 옵티컬 플로우 기법을 이용한 특이행동 인지 기법 연구)

  • Park, Jong-Hyun;Lim, Sung-Jo;Kang, Dong-Joong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.173-176
    • /
    • 2009
  • 본 논문에서는 감시시스템이 갖추어진 환경 내에서 발생할 수 있는 특이 행동을 효율적으로 감지하기 위한 기법을 제시한다. 최근 대형 범죄 및 방화 사건 등의 방지목적으로 DVR 의 단순 녹화를 벗어나 지능형 감시시스템을 도입하려는 연구가 활발히 진행되고 있다. 그러나 이러한 시스템들은 아직 초기 연구 단계에 있으며 영상내의 관심물체 추출을 위한 전경과 배경의 분리 및 추적 단계에 그치고 있다. 이에 본 논문에서는 가우시안 혼합 모델을 통하여 전경과 배경을 분리하고, 관심영역에 한해서 Optical Flow 기법을 이용하여 폭력상황과 같은 특이 행동의 감지 여부를 판단 할 수 있는 방법에 대해 실험을 통해 평가하였다.

A Study on Abnormal Behavior Intelligent Detection Method Using Audit Data (감사데이터를 이용한 지능적인 이상행위 감지 기법에 관한 연구)

  • Song, In-Su;Lee, Dae-Sung;Kim, Gui-Nam
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.665-666
    • /
    • 2009
  • 정보통신 기술과 저장 매체의 발전으로 많은 분야에 편리함과 더불어 산업기밀유출사고의 위험이 늘어나고 있다. 보안사고 중 80% 이상이 인적 보안 유출 이였으며 현직 직원의 유출은 약 25%정도의 부분을 차지하고 있었다. 기존의 단순한 시스템 로그 정보를 이용한 사용자 감사기술, DRM을 이용한 데이터 보호기술방법 보다는 진보된 방법이 필요하다. 사용자 정보와 시스템 정보, 시스템 콜 정보 수집을 통한 구분된 감사데이터의 통계기법을 이용한 지능적인 이상행위 탐지 기법을 제시한다.

Abnormal Behavior Detection for Zero Trust Security Model Using Deep Learning (제로트러스트 모델을 위한 딥러닝 기반의 비정상 행위 탐지)

  • Kim, Seo-Young;Jeong, Kyung-Hwa;Hwang, Yuna;Nyang, Dae-Hun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.05a
    • /
    • pp.132-135
    • /
    • 2021
  • 최근 네트워크의 확장으로 인한 공격 벡터의 증가로 외부자뿐 아니라 내부자를 경계해야 할 필요성이 증가함에 따라, 이를 다룬 보안 모델인 제로트러스트 모델이 주목받고 있다. 이 논문에서는 reverse proxy 와 사용자 패턴 인식 AI 를 이용한 제로트러스트 아키텍처를 제시하며 제로트러스트의 구현 가능성을 보이고, 새롭고 효율적인 전처리 과정을 통해 효과적으로 사용자를 인증할 수 있음을 제시한다. 이를 위해 사용자별로 마우스 사용 패턴, 리소스 사용 패턴을 인식하는 딥러닝 모델을 설계하였다. 끝으로 제로트러스트 모델에서 사용자 패턴 인식의 활용 가능성과 확장성을 보인다.

Design of pet abnormal behavior detection through sensor data augmentation based on GAN (GAN 기반 센서 데이터 증강을 통한 반려동물 이상행동 탐지 설계)

  • Kim, Hyungju;Moon, Nammee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.665-666
    • /
    • 2022
  • 반려동물의 이상행동 탐지를 위한 센서 데이터를 수집하는 과정에서 발생하는 시간과 비용의 문제로 인해 데이터 증강이 요구되고 있다. 본 논문에서는 통계적 변형과 GAN 기반의 데이터 증강을 통해 반려동물의 정상행동과 이상행동으로 분류하는 방법을 제안한다. 통계적 변형은 회전, 순열, 조합 등을 이용하며, GAN을 통해 원본 데이터에 노이즈가 포함된 유사한 데이터를 생성한다. 증강된 모든 데이터는 원본 데이터와 함께 학습 데이터로 사용한다. 최종적으로, LSTM의 단점을 보완한 Convolutional LSTM 모델을 통해 반려동물의 정상행동 인식의 범주를 넓혀 보다 정확한 이상행동을 인식하고자 한다.

Improving the Cyber Security over Banking Sector by Detecting the Malicious Attacks Using the Wrapper Stepwise Resnet Classifier

  • Damodharan Kuttiyappan;Rajasekar, V
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1657-1673
    • /
    • 2023
  • With the advancement of information technology, criminals employ multiple cyberspaces to promote cybercrime. To combat cybercrime and cyber dangers, banks and financial institutions use artificial intelligence (AI). AI technologies assist the banking sector to develop and grow in many ways. Transparency and explanation of AI's ability are required to preserve trust. Deep learning protects client behavior and interest data. Deep learning techniques may anticipate cyber-attack behavior, allowing for secure banking transactions. This proposed approach is based on a user-centric design that safeguards people's private data over banking. Here, initially, the attack data can be generated over banking transactions. Routing is done for the configuration of the nodes. Then, the obtained data can be preprocessed for removing the errors. Followed by hierarchical network feature extraction can be used to identify the abnormal features related to the attack. Finally, the user data can be protected and the malicious attack in the transmission route can be identified by using the Wrapper stepwise ResNet classifier. The proposed work outperforms other techniques in terms of attack detection and accuracy, and the findings are depicted in the graphical format by employing the Python tool.

Protecting Accounting Information Systems using Machine Learning Based Intrusion Detection

  • Biswajit Panja
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.5
    • /
    • pp.111-118
    • /
    • 2024
  • In general network-based intrusion detection system is designed to detect malicious behavior directed at a network or its resources. The key goal of this paper is to look at network data and identify whether it is normal traffic data or anomaly traffic data specifically for accounting information systems. In today's world, there are a variety of principles for detecting various forms of network-based intrusion. In this paper, we are using supervised machine learning techniques. Classification models are used to train and validate data. Using these algorithms we are training the system using a training dataset then we use this trained system to detect intrusion from the testing dataset. In our proposed method, we will detect whether the network data is normal or an anomaly. Using this method we can avoid unauthorized activity on the network and systems under that network. The Decision Tree and K-Nearest Neighbor are applied to the proposed model to classify abnormal to normal behaviors of network traffic data. In addition to that, Logistic Regression Classifier and Support Vector Classification algorithms are used in our model to support proposed concepts. Furthermore, a feature selection method is used to collect valuable information from the dataset to enhance the efficiency of the proposed approach. Random Forest machine learning algorithm is used, which assists the system to identify crucial aspects and focus on them rather than all the features them. The experimental findings revealed that the suggested method for network intrusion detection has a neglected false alarm rate, with the accuracy of the result expected to be between 95% and 100%. As a result of the high precision rate, this concept can be used to detect network data intrusion and prevent vulnerabilities on the network.