• Title/Summary/Keyword: Abiotic Stress

Search Result 355, Processing Time 0.035 seconds

Molecular Cloning and Characterization of Type 2 Metallothionein cDNA from Codonopsis lanceolata (S. et Z.) Trautv

  • In, Jun-Gyo;Lee, Bum-Soo;Yi, Tae-Hoo;Yu, Chang-Yeon;Yang, Deok-Chun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.13 no.5
    • /
    • pp.288-292
    • /
    • 2005
  • A class I type 2 metallothionein (CMet2) cDNA from taproot of Codonopsis lanceolata was isolated and characterized. A CMet2 cDNA was 572 nucleotides long and had an open reading frame of 234 bp with a deduced amino acid sequence of 78 residues (pI = 4.99). The deduced amino acid sequence of CMet2 matched to the previously reported type 2 metallothionein-like protein genes and showed 74% identity with that of G. max (BAD18377) and C. arietinum (CAA65009). Expression of CMet2 by the RT-PCR was increased at 1 hr after cadmium and hydrogen peroxide treatment, respectively.

Environmental Factors and Bioremediation of Xenobiotics Using White Rot Fungi

  • Magan, Naresh;Fragoeiro, Silvia;Bastos, Catarina
    • Mycobiology
    • /
    • v.38 no.4
    • /
    • pp.238-248
    • /
    • 2010
  • This review provides background information on the importance of bioremediation approaches. It describes the roles of fungi, specifically white rot fungi, and their extracellular enzymes, laccases, ligninases, and peroxidises, in the degradation of xenobiotic compounds such as single and mixtures of pesticides. We discuss the importance of abiotic factors such as water potential, temperature, and pH stress when considering an environmental screening approach, and examples are provided of the differential effect of white rot fungi on the degradation of single and mixtures of pesticides using fungi such as Trametes versicolor and Phanerochaete chrysosporium. We also explore the formulation and delivery of fungal bioremedial inoculants to terrestrial ecosystems as well as the use of spent mushroom compost as an approach. Future areas for research and potential exploitation of new techniques are also considered.

The Divergent Roles of STAYGREEN (SGR) Homologs in Chlorophyll Degradation

  • Sakuraba, Yasuhito;Park, So-Yon;Paek, Nam-Chon
    • Molecules and Cells
    • /
    • v.38 no.5
    • /
    • pp.390-395
    • /
    • 2015
  • Degradation of chlorophyll (Chl) by Chl catabolic enzymes (CCEs) causes the loss of green color that typically occurs during senescence of leaves. In addition to CCEs, STAYGREEN1 (SGR1) functions as a key regulator of Chl degradation. Although sgr1 mutants in many plant species exhibit a staygreen phenotype, the biochemical function of the SGR1 protein remains elusive. Many recent studies have examined the physiological and molecular roles of SGR1 and its homologs (SGR2 and SGR-LIKE) in Chl metabolism, finding that these proteins have different roles in different species. In this review, we summarize the recent studies on SGR and discuss the most likely functions of SGR homologs.

Characterization of Burkholderia glumae Putative Virulence Factor 11 (PVF11) via Yeast Two-Hybrid Interaction and Phenotypic Analysis

  • Kim, Juyun;Kim, Namgyu;Mannaa, Mohamed;Lee, Hyun-Hee;Jeon, Jong-Seong;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • v.35 no.3
    • /
    • pp.280-286
    • /
    • 2019
  • In this study, PVF11 was selected among 20 candidate pathogenesis-related genes in Burkholderia glumae based on its effect on virulence to rice. PVF11 was found to interact with several plant defense-related WRKY proteins as evidenced through yeast-two hybrid analysis (Y2H). Moreover, PVF11 showed interactions with abiotic and biotic stress response-related rice proteins, as shown by genome-wide Y2H screening employing PVF11 and a cDNA library from B. glumae-infected rice. To confirm the effect of PVF11 on B. glumae virulence, in planta assays were conducted at different stages of rice growth. As a result, a PVF11-defective mutant showed reduced virulence in rice seedlings and stems but not in rice panicles, indicating that PVF11 involvement in B. glumae virulence in rice is stage-dependent.

Leveraging Rice Genetic Diversity: Connecting the Genebank to Mainstream Breeding

  • J. Damien Platten
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.31-31
    • /
    • 2022
  • Rice contains a wealth of genetic diversity, both within Oryza sativa and in related A-genome species. Decades of genetic research into this diversity have identified dozens of major genes contributing to a wide variety of important traits, including disease resistance, abiotic stress tolerance (drought, salinity, submergence, heat, cold etc.), grain quality, flowering date and maturity and plant architecture. Yet despite these opportunities, very few of the major genes and QTLs known have been successfully applied through rice breeding programs to produce sustained changes in farmer's fields. This presentation will briefly examine some of the factors limiting application of major genes in the mainstream breeding programs, and steps that have been taken to alleviate those limitations. As a result of these interventions, dozens of major genes that were previously unavailable to breeders are now being used confidently in the variety development process. Case studies will be discussed of genes critical for blast resistance worldwide, rice yellow mottle virus for Africa, and new validated QTLs for salinity tolerance.

  • PDF