• Title/Summary/Keyword: AZO films

Search Result 244, Processing Time 0.03 seconds

The effect of RF power on the properties of AZO films (합성 RF power에 따른 AZO 박막의 특성변화)

  • Seo, Jae-Keun;Ko, Ki-Han;Lee, Jong-Hwan;Park, Mun-Gi;Seo, Kyung-Han;Choi, Won-Seok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.447-447
    • /
    • 2009
  • In this study, transparent and conductive Al-doped zinc oxide (AZO) films were prepared on Corning glass and silicon wafer substrate by RF magnetron sputtering method using an Al-doped ZnO target (Al: 2 wt.%) at room temperature as the thickness of 150 nm. We investigated the effects of the RF power between 100 Wand 350 W in steps of 50 W on structural, electrical and optical properties of AZO films. Also, we studied the effects of the working pressure (3, 4 and 5 mtorr) on that condition. The thickness and cross-sectional images of films were observed by field emission scanning electron microscopy (FE-SEM) and all of the films were kept to be constant to $150\pm10$ nm on Coming glass and silicon wafer. A grain size was calculated from X-ray diffraction (XRD) on using the Scherrer' equation and their electrical properties investigated hall effect electronic transport measurement system. Moreover, we measured transmittance of AZO films by UV/VIS spectrometer.

  • PDF

The post annealing effect on the properties of AZO films (AZO 박막의 후 열처리에 따른 특성변화)

  • Ko, Ki-Han;Seo, Jae-Keun;Kim, Jae-Kwang;Cho, Hyung-Jun;Hong, Byung-You;Choi, Won-Seok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.457-458
    • /
    • 2009
  • In this work, transparent conducting Al-doped zinc oxide (AZO) films were prepared on Coming glass substrate by RF magnetron sputtering using an Al-doped ZnO target (Al: 2 wt.%) at room temperature and all films were deposited with athickness of 150 nm. We investigated the effects of the post-annealing temperature and the annealing ambient on structural, electrical and optical properties of AZO films. The films were annealed at temperatures ranging from 300 to $500^{\circ}C$ in steps of $100^{\circ}C$ using rapid thermal annealing equipment in oxygen. The thickness of the film was observed by field emission scanning electron microscopy (FE-SEM) and grain size was calculated from the XRD spectra using the Scherrer equation and their electrical properties were investigated using a hole measurement and the reflectance of AZO films was investigated by UV-VIS spectrometry.

  • PDF

Structural, Optical and Electrical Properties of AI Doped ZnO Thin Films Prepared by Nd:YAG-PLD Technology (Nd:YAG-PLD법에 의해 제작된 ZnO:AI 박막의 구조적, 광학적, 전기적 특성)

  • No, Im-Jun;Lim, Jae-Sung;Lee, Cheon;Shin, Paik-Kyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.9
    • /
    • pp.1596-1601
    • /
    • 2007
  • Aluminum doped zinc oxide (AZO) thin films were deposited on coming glass substrates using an Nd:YAG pulsed laser deposition technology. The AZO thin films were deposited with various growth conditions such as the substrate temperature and oxygen partial pressure. In this work, we used various measurement technologies in order to investigate the electrical, structural, and optical properties of the AZO thin films. Among the AZO thin films, the one prepared at the substrate temperature of $300^{\circ}C$ and oxygen partial pressure of 5 mTorr showed the best properties of an electrical resistivity of $4.63{\times}10^{-4}{\Omega}{\cdot}cm$, a carrier concentration of $9.25{\times}10^{20}cm^{-3}$, and a carrier mobility of $31.33cm^2/V{\cdot}s$. All the AZO thin films showed an high average optical transmittance over 90 % in visible region.

Electrical and Optical Properties of Al-doped ZnO Thin Films (Al-doped ZnO 투명 전도성 박막(TCO)의 전기적 광학적 특성)

  • Hong, Youn-Jeong;Lee, Kyu-Mann;Kim, In-Woo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.3
    • /
    • pp.35-39
    • /
    • 2007
  • ITO(Indium Tin Oxide) is the most attractive TCO(Transparent Conducting Oxide) materials for LCD, PDP, OLEDs and solar cell, because of their high optical transparency and electrical conductivity. However due to the shortage of indium resource, hard processing at low temperature, and decrease of optical property during hydrogen plasma treatment, their applications to the display industries are limited. Thus, recently the Al-doped ZnO(AZO) has been studied to substitute ITO. In this study, we have investigated the effect of different substrate temperature(RT, $150^{\circ}C$, $225^{\circ}C$, $300^{\circ}C$) and working pressure(10 mTorr, 20 mTorr, 30 mTorr, 80 mTorr) on the characteristics of AZO(2 wt.% Al, 98 wt.% ZnO) films deposited by RF-magnetron sputtering. We have obtained AZO thin films deposited at low temperature and all the deposited AZO thin films are grown as colunmar. The average transmittance in the visible wavelength region is over 80% for all the films and transmittance improved with increasing substrate temperature. Electrical properties of the AZO films improved with increasing substrate temperature.

  • PDF

Structural and Electrical Properties of a-axis ZnO:Al Thin Films Grown by RF Magnetron Sputtering

  • Bong, Seong-Jae;Kim, Seon-Bo;An, Si-Hyeon;Park, Hyeong-Sik;Lee, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.329.1-329.1
    • /
    • 2014
  • In this paper, we report electrical, optical and structural properties of Al-doped zinc oxide (AZO) thin films deposited at different substrate temperatures and pressures. The films were prepared by radio frequency (RF) magnetron sputtering on glass substrates in argon (Ar) ambient. The X-ray diffraction analysis showed that the AZO films deposited at room temperature (RT) and 20 Pa were mostly oriented along a-axis with preferred orientation along (100) direction. There was an improvement in resistivity ($3.7{\times}10^{-3}{\Omega}-cm$) transmittance (95%) at constant substrate temperature (RT) and working pressure (20 Pa) using the Hall-effect measurement system and UV-vis spectroscopy, respectively. Our results have promising applications in low-cost transparent electronics, such as the thin-film solar cells and thin-film transistors due to favourable deposition conditions. Furthermore our film deposition method offers a procedure for preparing highly oriented (100) AZO films.

  • PDF

Effects of Al Concentration on Structural and Optical Properties of Al-doped ZnO Thin Films

  • Kim, Min-Su;Yim, Kwang-Gug;Son, Jeong-Sik;Leem, Jae-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1235-1241
    • /
    • 2012
  • Aluminium (Al)-doped zinc oxide (AZO) thin films with different Al concentrations were prepared by the solgel spin-coating method. Optical parameters such as the optical band gap, absorption coefficient, refractive index, dispersion parameter, and optical conductivity were studied in order to investigate the effects of the Al concentration on the optical properties of AZO thin films. The dispersion energy, single-oscillator energy, average oscillator wavelength, average oscillator strength, and refractive index at infinite wavelength of the AZO thin films were found to be affected by Al incorporation. The optical conductivity of the AZO thin films also increases with increasing photon energy.

The stability of ITO, AZO and SZO thin films in hydrogen plasma (ITO, AZO, SZO 박막의 수소 플라즈마에 대한 안정성)

  • 임원택;안유신;이상기;안일신;이창효
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.3
    • /
    • pp.227-234
    • /
    • 1997
  • The stabilities of ITO, AZO, and SZO have been studied in hydrogen plasma. We used the ITO films produced from Corning LTD, and AZO, SZO films made by rf magnetron sputtering methods. These films were loaded in PECVD chamber and exposed to hydrogen plasma. For ITO, the optical transmittance was decreased as sample surface temperature and exposure time were increased during hydrogen plasma treatment. The transmittance of ITO dropped to 10~20% and its conductivity disappeared completely after exposing to hydrogen plasma for 30 minutes at $300^{\circ}C$. For AZO and SZO, there was no optical loss but the optical gap was widened due to the hydrogen incorporation into the film, indicating Burstein-Moss effect. Also the surface morphology of AZO and SZO was stable in hydrogen ambient but ITO showed rough surface due to the reduction of metal elements.

  • PDF

Crystallographic Properties of ZnO/AZO thin Film Prepared by FTS method (FTS법으로 제작한 ZnO/AZO 박막의 결정학적 특성)

  • 금민종;강태영;최형욱;박용서;김경환
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.9
    • /
    • pp.979-982
    • /
    • 2004
  • The ZnO thin films were prepared by the FTS (facing target sputtering) system, which enables to provide high density plasma and a high deposition rate at a low working gas pressure. We introduced the AZO thin film in order to improve the crystallographic properties of ZnO thin film because of the AZO(ZnO:Al) thin film has an equal crystal structure to the ZnO thin film. ZnO/AZO thin films were deposited at a different oxygen gas flow ratio, R.T. 2mTorr working pressure and a 0.8A sputtering current. The film thickness and c-axis preferred orientation of ZnO/AZO/glass thin films were measured by ${\alpha}$-step and an x-ray diffraction (XRD) instrument. In the results, we could prepare the ZnO thin film with c-axis preferred orientation of about 6$^{\circ}$ on substrate temperature R.T. at O$_2$ gas flo rate 0.5.

Preparation and Evaluation of the Properties of Al-doped Zinc Oxide (AZO) Films Deposition by Rapid Thermal Annealing (급속 열처리 방법에 의한 Al-doped Zinc Oxide (AZO) Films의 제조 및 특성 평가)

  • Kim, Sung-Jin;Choi, Kyoon;Choi, Se-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.7
    • /
    • pp.543-551
    • /
    • 2012
  • In this study, transparent conducting Al-doped Zinc Oxide (AZO) films with a thickness of 150 nm were prepared on corning glass substrate by the RF magnetron sputtering with using a Al-doped zinc oxide (AZO), ($Al_2O_3$: 2 wt%) target at room temperature. This study investigated the effect of rapid thermal annealing temperature and oxygen ambient on structural, electrical and optical properties of Al-doped zinc oxide (AZO) thin films. The films were annealed at temperatures ranging from 400 to $700^{\circ}C$ by using Rapid thermal equipment in oxygen ambient. The effect of RTA treatment on the structural properties were studied by x-ray diffraction and atomic force microscopy. It is observed that the Al-doped zinc oxide (AZO) thin film annealed at $500^{\circ}C$ at 5 minute oxygen ambient gas reveals the strongest XRD emission intensity and narrowest full width at half maximum among the temperature studied. The enhanced UV emission from the film annealed at $500^{\circ}C$ at 5 minute oxygen ambient gas is attributed to the improved crystalline quality of Al-doped zinc oxide (AZO) thin film due to the effective relaxation of residual compressive stress and achieving maximum grain size.

Investigation of Transparent Conductive Oxide Films Deposited by Co-sputtering of ITO and AZO (ITO와 AZO 동시 증착법으로 제조된 투명전도막의 특성 연구)

  • Kim, Dong-Ho;Kim, Hye-Ri;Lee, Sung-Hun;Byon, Eung-Sun;Lee, Gun-Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.3
    • /
    • pp.128-132
    • /
    • 2009
  • Transparent conducting thin films of indium tin oxide(ITO) co-sputtered with aluminum-doped zinc oxide(AZO) were deposited on glass substrate by dual magnetron sputtering. It was found that the electrical properties and structural characteristics of the films are significantly changed according to the sputtering power of the AZO target. The IAZTO film prepared with D.C power of ITO at 100 W and R.F power of AZO at 50 W shows an electrical resistivity of $4.6{\times}10^{-4}{\Omega}{\cdot}cm$ and a sheet resistance of $30{\Omega}/{\square}$ (for 150 nm thick). Besides of the improvement of the electrical properties, compared to the ITO films deposited at the same process conditions, the IAZTO films have very smooth surface, which is due to the amorphous nature of the films. However, the electrical conductivity of the IAZTO films was found to be deteriorated along with the crystallization in case of the high temperature deposition (above $310^{\circ}C$). In this work, high quality amorphous transparent conductive oxide layers could be obtained by mixing AZO with ITO, indicating possible use of IAZTO films as the transparent electrodes in OLED and flexible display devices.