• 제목/요약/키워드: AZO 박막

검색결과 225건 처리시간 0.031초

Al-doped ZnO 투명 전도성 박막(TCO)의 전기적 광학적 특성 (Electrical and Optical Properties of Al-doped ZnO Thin Films)

  • 홍윤정;이규만;김인우
    • 반도체디스플레이기술학회지
    • /
    • 제6권3호
    • /
    • pp.35-39
    • /
    • 2007
  • ITO(Indium Tin Oxide) is the most attractive TCO(Transparent Conducting Oxide) materials for LCD, PDP, OLEDs and solar cell, because of their high optical transparency and electrical conductivity. However due to the shortage of indium resource, hard processing at low temperature, and decrease of optical property during hydrogen plasma treatment, their applications to the display industries are limited. Thus, recently the Al-doped ZnO(AZO) has been studied to substitute ITO. In this study, we have investigated the effect of different substrate temperature(RT, $150^{\circ}C$, $225^{\circ}C$, $300^{\circ}C$) and working pressure(10 mTorr, 20 mTorr, 30 mTorr, 80 mTorr) on the characteristics of AZO(2 wt.% Al, 98 wt.% ZnO) films deposited by RF-magnetron sputtering. We have obtained AZO thin films deposited at low temperature and all the deposited AZO thin films are grown as colunmar. The average transmittance in the visible wavelength region is over 80% for all the films and transmittance improved with increasing substrate temperature. Electrical properties of the AZO films improved with increasing substrate temperature.

  • PDF

유도결합 플라즈마 스퍼터링을 이용한 플라스틱 기판 상의 Al이 도핑된 ZnO 박막 증착 (Deposition of Al Doped ZnO Films Using ICP-assisted Sputtering on the Plastic Substrate)

  • 정승재;한영훈;이정중
    • 한국표면공학회지
    • /
    • 제39권3호
    • /
    • pp.98-104
    • /
    • 2006
  • Al-doped ZnO (AZO) films were deposited on the plastic substrate by inductively coupled plasma (ICP) assisted DC magnetron sputtering. The AZO films were produced by sputtering a metallic target (Zn/Al) in a mixture of argon and oxygen gases. AZO films with an electrical resistivity of ${\sim}10^3\;{\Omega}cm$ and an optical transmittance of 80% were obtained even at a low deposition temperature. In-situ process control methods were used to obtain stable deposition conditions in the transition region without any hysteresis effect. The target voltage was controlled either at a constant DC power. It was found that the ratio of the zinc to oxygen emission intensity, I (O 777)/I (Zn 481) decreased with increasing the target voltage in the transition region. The $Ar/O_2$ plasma treatment improve the adhesion strength between the polycarbonate substrate and AZO films.

원통형 타겟 형태의 DC 마그네트론 스퍼터링을 이용한 산화 아연 박막의 전기적 기제에 대한 분석 (Electrical mechanism analysis of $Al_2O_3$ doped zinc oxide thin films deposited by rotating cylindrical DC magnetron sputtering)

  • 장주연;박형식;안시현;조재현;장경수;이준신
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.55.1-55.1
    • /
    • 2010
  • Cost efficient and large area deposition of superior quality $Al_2O_3$ doped zinc oxide (AZO) films is instrumental in many of its applications including solar cell fabrication due to its numerous advantages over ITO films. In this study, AZO films were prepared by a highly efficient rotating cylindrical dc magnetron sputtering system using AZO target, which has a target material utilization above 80%, on glass substrates in argon ambient. A detailed analysis on the electrical, optical and structural characteristics of AZO thin films was carried out for solar cell application. The properties of films were found to critically depend on deposition parameters such as sputtering power, substrate temperature, working pressure, and thickness of the films. A low resistivity of ${\sim}5.5{\times}10-4{\Omega}-cm$ was obtained for films deposited at 2kW, keeping the pressure and substrate temperature constant at 3 mtorr and $230^{\circ}C$ respectively, mainly due to an increase in carrier mobility and large grain size which would reduce the grain boundary scattering. The increase in carrier mobility with power can be attributed to the columnar growth of AZO film with (002) preferred orientation as revealed by XRD analysis. The AZO films showed a high transparency of>87% in the visible wavelength region irrespective of deposition conditions. Our results offers a cost-efficient AZO film deposition method which can fabricate films with significant low resistivity and high transmittance that can find application in thin-film solar cells.

  • PDF

증착 및 열처리 조건에 따른 AZO/Cu/AZO 박막의 전기적·광학적 특성 평가 (Effect of Deposition and Heat Treatment Conditions on the Electrical and Optical Properties of AZO/Cu/AZO Thin Film)

  • 김찬영;임하은;양가은;권숙정;강찬희;임상철;이택영
    • 한국재료학회지
    • /
    • 제33권4호
    • /
    • pp.142-150
    • /
    • 2023
  • AZO/Cu/AZO thin films were deposited on glass by RF magnetron sputtering. The specimens showed the preferred orientation of (0002) AZO and (111) Cu. The Cu crystal sizes increased from about 3.7 nm to about 8.5 nm with increasing Cu thickness, and from about 6.3 nm to about 9.5 nm with increasing heat treatment temperatures. The sizes of AZO crystals were almost independent of the Cu thickness, and increased slightly with heat treatment temperature. The residual stress of AZO after heat treatment also increased compressively from -4.6 GPa to -5.6 GPa with increasing heat treatment temperature. The increase in crystal size resulted from grain growth, and the increase in stress resulted from the decrease in defects that accompanied grain growth, and the thermal stress during cooling from heat treatment temperature to room temperature. From the PL spectra, the decrease in defects during heat treatment resulted in the increased intensity. The electrical resistivities of the 4 nm Cu film were 5.9×10-4 Ω·cm and about 1.0×10-4 Ω·cm for thicker Cu films. The resistivity decreased as the temperature of heat treatment increased. As the Cu thickness increased, an increase in carrier concentration resulted, as the fraction of AZO/Cu/AZO metal film increased. And the increase in carrier concentration with increasing heat treatment temperature might result from the diffusion of Cu ions into AZO. Transmittance decreased with increasing Cu thicknesses, and reached a maximum near the 500 nm wavelength after being heat treated at 200 ℃.

RF 스퍼터링법으로 사파이어 기판 위에 성장한 ZnO와 ZnO : A1 박막의 질소 및 수소 후열처리에 따른 Photoluminescence 특성 (A study of the photoluminescence of undoped ZnO and Al doped ZnO single crystal films on sapphire substrate grown by RF magnetron sputtering)

  • 조정;윤기현;정형진;최원국
    • 한국재료학회지
    • /
    • 제11권10호
    • /
    • pp.889-894
    • /
    • 2001
  • 2wt% $Al_2O_3-doped$ ZnO (AZO) thin films were deposited on sapphire (0001) single crystal substrate by parellel type rf magnetron sputtering at 55$0^{\circ}C$. The as-grown AZO thin films was polycrystalline and showed only broad deep defect-level photoluminescence (PL). In order to examine the change of PL property, AZO thin films were annealed in $N_2$ (N-AZO) and $H_2$ (H-AZO) at the temperature of $600^{\circ}C$~$1000^{\circ}C$ through rapid thermal annealing. After annealed at $800^{\circ}C$, N-AZO shows near band edge emission (NBE) with very small deep-level emission, and then N-AZO annealed at $900^{\circ}C$ shows only sharp NBE with 219 meV FWHM. In Comparison with N-AZO, H-AZO exhibits very interesting PL features. After $600^{\circ}C$ annealing, deep defect-level emission was quire quenched and NBE around 382 nm (3.2 eV) was observed, which can be explained by the $H_2$passivation effect. At elevated temperature, two interesting peaks corresponding to violet (406 nm, 3.05 eV) and blue (436 nm, 2.84 eV) emission was firstly observed in AZO thin films. Moreover, peculiar PL peak around 694 nm (1.78 eV) is also firstly observed in all the H-AZO thin films and this is believed good evidence of hydrogenation of AZO. Based on defect-level scheme calculated by using the full potential linear muffin-tin orbital (FP-LMTO), the emission 3.2 eV, 3.05 eV, 3.84 eV and 1.78 eV of H-AZO are substantially deginated as exciton emission, transition from conduction band maximum to $V_{ Zn},$ from $Zn_i$, to valence band maximum $(V_{BM})$ and from $V_{o} to V_BM}$, respectively.

  • PDF