• Title/Summary/Keyword: ASPEN plus

Search Result 71, Processing Time 0.021 seconds

A Study on the Thermal Designs of 300 MW-Class IGCC Plant (300 MW급 IGCC 플랜트의 열 설계 연구)

  • 이윤경;서석빈;김종진
    • Journal of Energy Engineering
    • /
    • v.11 no.2
    • /
    • pp.81-89
    • /
    • 2002
  • IGCC (Integrated Coal Gasification Combined Cycle) is a technology that generates electric power using coal gasification and gasified fuel. Carbon conversion value of IGCC is higher and the influence on the environment is lower than the pulverized coal power plant. Especially, in the nations where the weight of fossil fuel for power generation is remarkably high like in Korea, IGCC stands out as an alternative plan to cope with sudden limitation for the emissions. In this paper, system design study for the commercial IGCC system which the introduction is imminent to Korea was performed. Two cases of entrained gasification process are adapted, one is FHR(full heat recovery) type IGCC system for high efficiency and the other is Quench type IGCC system for low cost. System simulations using common codes like AspenPlus were performed for each system. In the case of Quench system, system option study and sensitivity analysis of the air extraction rate was performed. Thermal performance result for the FHR system is 42.6% (HHV, Net) and for the quench system is 40% (HHV, net) when 75% air is extracted.

Steady-state Simulation and Energy-saving Optimization of Monoethylene Glycol Production Process (모노에틸렌 글리콜 생산공정의 정상상태 모사 및 에너지 절약 최적화 연구)

  • Kim, Tae Ki;Jeon, In Cheol;Chung, Sung Taik
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.903-914
    • /
    • 2008
  • This study was undertaken for the production capacity expansion and energy saving through entire process simulation and optimization for the commercial process of manufacturing monoethylene glycol as a staple from ethylene oxide. Aspen $Plus^{TM}$(ver. 2006) was employed in the simulation and optimization work. The multicomponent vapor-liquid equilibria involved in the process were calculated using the NRTL-RK equation. As for the binary interaction parameters required for a total of 91 binary systems, those for 8 systems were self-supplied by the simulator, those for 28 systems were estimated through regression of the VLE data in the literature, and the remainder were estimated with the estimation system built in the simulator. Subsequent to ascertaining the accuracy of the generated parameters through comparison between actual and simulated process data, sensitive variables highly affecting the process were searched and selected using sensitivity analysis tool in the simulator. The optimum operating conditions minimizing the total heat duty of the process were investigated using the optimization tool based on the successive quadratic programming in the simulator.

The Study on Synthesis Gas Characteristics Following Different Injection Condition of Oxidizing Agent Through Simulation of Underground Coal Gasification (지중 석탄가스화 공정 시뮬레이션을 통한 산화제 주입조건에 따른 합성가스 특성에 대한 연구)

  • Jang, Dong-Ha;Yoon, Sang-Phil;Kim, Hyung-Taek;Kim, Jeong-Gyoo;Cho, Won-Jun;Ju, Woo-Sung;Lee, Jin-Wook;Lee, Chan
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.5
    • /
    • pp.28-36
    • /
    • 2013
  • The underground coal which is buried in the ground will have a lot of attention to overcome energy crisis as an energy resources standpoint. Many studies of underground coal gasification have been also conducted because of its advantage which does not require mining. In this study, the simulation of underground coal gasification process was carried out with Aspen Plus. This study was executed by Rock Mountain 1 Underground Coal Gasification project in the United States in the late 1980s as a reference. Sensitivity analysis proceeded to investigate synthesis gas characteristics following different injection condition of oxidizing agent. The underground coal gasification model has been implemented. That is divided into drying, pyrolysis, char gasification and the simulation results was confirmed by the production gas flow, yield of synthesis gas and amount of gasified carbon from results of the actual experimental data.

Techno-economic Analysis of Power to Gas (P2G) Process for the Development of Optimum Business Model: Part 1 Methane Production

  • Roy, Partho Sarothi;Yoo, Young Don;Kim, Suhyun;Park, Chan Seung
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.182-192
    • /
    • 2022
  • This study provides an overview of the production costs of methane and hydrogen via water electrolysis-based hydrogen production followed by a methanation based methane production technology utilizing CO2 from external sources. The study shows a comparative way for economic optimization of green methane generation using excess free electricity from renewable sources. The study initially developed the overall process on the Aspen Plus simulation tool. Aspen Plus estimated the capital expenditure for most of the equipment except for the methanation reactor and electrolyzer. The capital expenditure, the operating expenditure and the feed cost were used in a discounted cash flow based economic model for the methane production cost estimation. The study compared different reactor configurations as well. The same model was also used for a hydrogen production cost estimation. The optimized economic model estimated a methane production cost of $11.22/mcf when the plant is operating for 4000 hr/year and electricity is available for zero cost. Furthermore, a hydrogen production cost of $2.45/GJ was obtained. A sensitivity analysis was performed for the methane production cost as the electrolyzer cost varies across different electrolyzer types. A sensitivity study was also performed for the changing electricity cost, the number of operation hours per year and the plant capacity. The estimated levelized cost of methane (LCOM) in this study was less than or comparable with the existing studies available in the literature.

Economic and Environmental Sustainability Assessment of Livestock Manure Gasification for Fuel Gas Production (축분 가스화를 통한 연료가스 생산 공정의 경제적, 환경적 지속가능성 평가)

  • Ji Hong Moon;Kyung Hwan Ryu
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.291-298
    • /
    • 2023
  • This research evaluates the sustainability of gasifying livestock manure to produce fuel gas from an economic and carbon emission perspective. The entire process, including gasification, fuel gas purification, and pipeline installation to transport the produced fuel gas to the demanding industrial complex, is analyzed for realistic feasibility. The study is conducted using an ASPEN PLUS simulation with experimental data. The results of the economic and CO2 life cycle assessments confirm that the fuel gas produced from livestock manure is competitive with natural gas despite having a lower calorific value. When used as a fuel with a high hydrogen content, the fuel gas emits less CO2 per calorific value, making it more environmentally friendly. A scenario analysis is also performed to determine the expected economics, with price competitiveness being influenced by several factors. Although a significant decrease in natural gas prices could reduce the price competitiveness of the proposed process, it can still be supported by government policies. The cash flow analysis also confirms the economic viability of the process.

Simulation of a 50 ㎾ Phosphoric Acid Fuel Cell System Using Natural Gas (천연가스를 사용하는 50 ㎾ 인산형 연료전지 시스템의 전산모사)

  • 서정원;김성준;설용건;이태희
    • Journal of Energy Engineering
    • /
    • v.2 no.1
    • /
    • pp.75-82
    • /
    • 1993
  • A 50 ㎾ phosphoric acid fuel cell(PAFC) system using natural gas was simulated for steady state with the commercial software, ASPEN PLUS. The USER block and the FORTRAN block were prepared to simulate the cell. The changes of hydrogen yield according to the variation of several operating conditions were examined and the operating conditions to maximize hydrogen yield were obtained. The simulation results agree with the real data, which can be used to prepare the basic process data and the optimal conditions for the domestic commercial fuel cell system. H$_2$utilization rate over 50% should be maintained to achieve the efficiency of the conventional electricity generation. Energy consumption can be reduced by utilizing the heat released from the reformer and the cell which are operated at high temperatures.

  • PDF

Design and Optimization of Extractive Thermally Coupled Distillation System (추출 열 통합 증류계의 설계 및 최적화)

  • Cho, Hoon;Woo, Daesik;Choi, Yumi;Han, Myungwan
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.270-276
    • /
    • 2012
  • In this study, thermally coupled distillation system and conventional two-column process were investigated for extractive distillation. The two processes were simulated and optimized using Aspen plus. Objective function for the optimization was energy consumption and optimization results to reduce energy consumption were used to get guidelines for design and operation for the two extractive distillation processes. Comparison of these two processes showed that thermally coupled distillation system provided better energy efficiency and lower capital cost than conventional distillation system.

Optimization of Membrane Separation System for Carbon Dioxide Recovery from Combustion Gases (연소기체로부터 이산화탄소 회수를 위한 막 분리 공정의 최적화)

  • Han, Myungwan;Kim, Miyoung;Kim, Beom-Sik
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.222-229
    • /
    • 2005
  • Five stage enriching membrane system for separating combustion gas (air 90%, $CO_2$ 10%) was proposed and simulated by using Aspen plus and Excel. The system recovers 90% $CO_2$ of the combustion gas and the purity of $CO_2$ recovered was more than 99%. Optimization yields a reduction in membrane area as well as operating and capital cost. Retentate concentration and permeate pressure of each stage were chosen as optimization variables. By analyzing the optimization results, we derived several design guide lines for the enriching membrane system.

A study on the Optimization of Hydrogen Production and Purification System for PEMFC (PEMFC에 사용되는 수소 생산 및 정화 기술 최적화 연구 )

  • SEOK KYUN KO;SANGYONG LEE
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • A fuel handling process combined with a pressure swing adsorption system (PSA) was simulated to produce pure hydrogen with a purity greater than 99.97%. The simulation consists of two parts. The fuel processing part consisting of reformer and water-gas shift reaction was simulated with Aspen plus®, and the hydrogen purification part consisting of PSA was simulated with Aspen Adsorption®. In this study, the effect of reformer temperature and pressure on the total hydrogen production yield was investigated. Simulations were performed over a temperature range of 700 to 1,000℃ and a pressure range of 1 to 10 bar. The total hydrogen production yield increased with increasing temperature and decreasing pressure. The maximum hydrogen yield was less than 50% in the simulation and will be lower in the real process.

The Optimal Operation Condition and Estimation Performance for 300MW Demonstration Gasifier (300MW급 실증 가스화기의 최적 운전조건 및 성능 예측)

  • Yoo, Jeong-Seok;Koo, Ja-Hyung;Paek, Min-Su;Lee, Hwang-Jik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.368-371
    • /
    • 2008
  • The optimal operation condition of gasifier is one of the most important parameters to increase efficiency and reliability in IGCC plant. Also the prediction of the syngas composition and quantity must be predicted to carry out process design of the gasification plant. However, the gasifier process licensor are protective with information on process design and optimal gasifier design conditions. So, the most of process studies in the engineering company for gasification plant have carried out to look for key parameters and optimal design conditions using several prediction methods. In this paper, we present the estimated preliminary optimal operation condition of the 300MW Demonstration Entrain Flow Gasifier using Aspen Plus. The gasifier operation temperature considering slag flow was predicted by FactSage software and Annen Model.

  • PDF