• Title, Summary, Keyword: ASM Algorithm

Search Result 35, Processing Time 0.026 seconds

Face Detection using AdaBoost and ASM (AdaBoost와 ASM을 활용한 얼굴 검출)

  • Lee, Yong-Hwan;Kim, Heung-Jun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.4
    • /
    • pp.105-108
    • /
    • 2018
  • Face Detection is an essential first step of the face recognition, and this is significant effects on face feature extraction and the effects of face recognition. Face detection has extensive research value and significance. In this paper, we present and analysis the principle, merits and demerits of the classic AdaBoost face detection and ASM algorithm based on point distribution model, which ASM solves the problems of face detection based on AdaBoost. First, the implemented scheme uses AdaBoost algorithm to detect original face from input images or video stream. Then, it uses ASM algorithm converges, which fit face region detected by AdaBoost to detect faces more accurately. Finally, it cuts out the specified size of the facial region on the basis of the positioning coordinates of eyes. The experimental result shows that the method can detect face rapidly and precisely, with a strong robustness.

Design of ASM-based Face Recognition System Using (2D)2 Hybird Preprocessing Algorithm (ASM기반 (2D)2 하이브리드 전처리 알고리즘을 이용한 얼굴인식 시스템 설계)

  • Kim, Hyun-Ki;Jin, Yong-Tak;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.2
    • /
    • pp.173-178
    • /
    • 2014
  • In this study, we introduce ASM-based face recognition classifier and its design methodology with the aid of 2-dimensional 2-directional hybird preprocessing algorithm. Since the image of face recognition is easily affected by external environments, ASM(active shape model) as image preprocessing algorithm is used to resolve such problem. In particular, ASM is used widely for the purpose of feature extraction for human face. After extracting face image area by using ASM, the dimensionality of the extracted face image data is reduced by using $(2D)^2$hybrid preprocessing algorithm based on LDA and PCA. Face image data through preprocessing algorithm is used as input data for the design of the proposed polynomials based radial basis function neural network. Unlike as the case in existing neural networks, the proposed pattern classifier has the characteristics of a robust neural network and it is also superior from the view point of predictive ability as well as ability to resolve the problem of multi-dimensionality. The essential design parameters (the number of row eigenvectors, column eigenvectors, and clusters, and fuzzification coefficient) of the classifier are optimized by means of ABC(artificial bee colony) algorithm. The performance of the proposed classifier is quantified through yale and AT&T dataset widely used in the face recognition.

The tongue dominant region detection using ASM and Color Variance Snake Algorithm (ASM과 컬러 분산 스네이크 기법을 이용한 혀 영역 검출)

  • Pak, Jin-Woong;Song, Won-Chang;Kang, Sun-Kyung;Jung, Sung-Tae
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • /
    • pp.253-256
    • /
    • 2011
  • 본 논문은 기존의 디지털 설진 시스템이 아닌 임베디드 환경에서의 실시간 설진 진단 방법을 제안한다. 임의의 환경에서 얻어낸 이미지에서 혀 영역의 추출과 추출된 영역에서의 혀의 상태를 진단하는데는 많은 어려움이 있다. 다양한 조명환경에서의 영상으로부터 혀 영역을 추출해 내는 방법으로는 ASM을 이용하는 방법이 있는데 이는 검출률이 낮아 정확도가 떨어진다. 이를 보완하기 위해 본 논문에서는 ASM과 물체 외곽 정보 복원에 기반을 둔 컬러 분산 스테이크 기법을 사용하여 정확도를 개선하는 방법을 제안한다.

  • PDF

ASM Algorithm Applid to Image Object spFACS Study on Face Recognition (영상객체 spFACS ASM 알고리즘을 적용한 얼굴인식에 관한 연구)

  • Choi, Byungkwan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.12 no.4
    • /
    • pp.1-12
    • /
    • 2016
  • Digital imaging technology has developed into a state-of-the-art IT convergence, composite industry beyond the limits of the multimedia industry, especially in the field of smart object recognition, face - Application developed various techniques have been actively studied in conjunction with the phone. Recently, face recognition technology through the object recognition technology and evolved into intelligent video detection recognition technology, image recognition technology object detection recognition process applies to skills through is applied to the IP camera, the image object recognition technology with face recognition and active research have. In this paper, we first propose the necessary technical elements of the human factor technology trends and look at the human object recognition based spFACS (Smile Progress Facial Action Coding System) for detecting smiles study plan of the image recognition technology recognizes objects. Study scheme 1). ASM algorithm. By suggesting ways to effectively evaluate psychological research skills through the image object 2). By applying the result via the face recognition object to the tooth area it is detected in accordance with the recognized facial expression recognition of a person demonstrated the effect of extracting the feature points.

Design of Optimized pRBFNNs-based Face Recognition Algorithm Using Two-dimensional Image and ASM Algorithm (최적 pRBFNNs 패턴분류기 기반 2차원 영상과 ASM 알고리즘을 이용한 얼굴인식 알고리즘 설계)

  • Oh, Sung-Kwun;Ma, Chang-Min;Yoo, Sung-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.6
    • /
    • pp.749-754
    • /
    • 2011
  • In this study, we propose the design of optimized pRBFNNs-based face recognition system using two-dimensional Image and ASM algorithm. usually the existing 2 dimensional face recognition methods have the effects of the scale change of the image, position variation or the backgrounds of an image. In this paper, the face region information obtained from the detected face region is used for the compensation of these defects. In this paper, we use a CCD camera to obtain a picture frame directly. By using histogram equalization method, we can partially enhance the distorted image influenced by natural as well as artificial illumination. AdaBoost algorithm is used for the detection of face image between face and non-face image area. We can butt up personal profile by extracting the both face contour and shape using ASM(Active Shape Model) and then reduce dimension of image data using PCA. The proposed pRBFNNs consists of three functional modules such as the condition part, the conclusion part, and the inference part. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of RBFNNs is represented as three kinds of polynomials such as constant, linear, and quadratic. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of Differential Evolution. The proposed pRBFNNs are applied to real-time face image database and then demonstrated from viewpoint of the output performance and recognition rate.

A Study on Appearance-Based Facial Expression Recognition Using Active Shape Model (Active Shape Model을 이용한 외형기반 얼굴표정인식에 관한 연구)

  • Kim, Dong-Ju;Shin, Jeong-Hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.1
    • /
    • pp.43-50
    • /
    • 2016
  • This paper introduces an appearance-based facial expression recognition method using ASM landmarks which is used to acquire a detailed face region. In particular, EHMM-based algorithm and SVM classifier with histogram feature are employed to appearance-based facial expression recognition, and performance evaluation of proposed method was performed with CK and JAFFE facial expression database. In addition, performance comparison was achieved through comparison with distance-based face normalization method and a geometric feature-based facial expression approach which employed geometrical features of ASM landmarks and SVM algorithm. As a result, the proposed method using ASM-based face normalization showed performance improvements of 6.39% and 7.98% compared to previous distance-based face normalization method for CK database and JAFFE database, respectively. Also, the proposed method showed higher performance compared to geometric feature-based facial expression approach, and we confirmed an effectiveness of proposed method.

Robust Real-time Tracking of Facial Features with Application to Emotion Recognition (안정적인 실시간 얼굴 특징점 추적과 감정인식 응용)

  • Ahn, Byungtae;Kim, Eung-Hee;Sohn, Jin-Hun;Kweon, In So
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.4
    • /
    • pp.266-272
    • /
    • 2013
  • Facial feature extraction and tracking are essential steps in human-robot-interaction (HRI) field such as face recognition, gaze estimation, and emotion recognition. Active shape model (ASM) is one of the successful generative models that extract the facial features. However, applying only ASM is not adequate for modeling a face in actual applications, because positions of facial features are unstably extracted due to limitation of the number of iterations in the ASM fitting algorithm. The unaccurate positions of facial features decrease the performance of the emotion recognition. In this paper, we propose real-time facial feature extraction and tracking framework using ASM and LK optical flow for emotion recognition. LK optical flow is desirable to estimate time-varying geometric parameters in sequential face images. In addition, we introduce a straightforward method to avoid tracking failure caused by partial occlusions that can be a serious problem for tracking based algorithm. Emotion recognition experiments with k-NN and SVM classifier shows over 95% classification accuracy for three emotions: "joy", "anger", and "disgust".

Robust Three-step facial landmark localization under the complicated condition via ASM and POEM

  • Li, Weisheng;Peng, Lai;Zhou, Lifang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3685-3700
    • /
    • 2015
  • To avoid influences caused by pose, illumination and facial expression variations, we propose a robust three-step algorithm based on ASM and POEM for facial landmark localization. Firstly, Model Selection Factor is utilized to achieve a pose-free initialized shape. Then, we use the global shape model of ASM to describe the whole face and the texture model POEM to adjust the position of each landmark. Thirdly, a second localization is presented to discriminatively refine the subtle shape variation for some organs and contours. Experiments are conducted in four main face datasets, and the results demonstrate that the proposed method accurately localizes facial landmarks and outperforms other state-of-the-art methods.

Improvement of Active Shape Model for Detecting Face Features in iOS Platform (iOS 플랫폼에서 Active Shape Model 개선을 통한 얼굴 특징 검출)

  • Lee, Yong-Hwan;Kim, Heung-Jun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.2
    • /
    • pp.61-65
    • /
    • 2016
  • Facial feature detection is a fundamental function in the field of computer vision such as security, bio-metrics, 3D modeling, and face recognition. There are many algorithms for the function, active shape model is one of the most popular local texture models. This paper addresses issues related to face detection, and implements an efficient extraction algorithm for extracting the facial feature points to use on iOS platform. In this paper, we extend the original ASM algorithm to improve its performance by four modifications. First, to detect a face and to initialize the shape model, we apply a face detection API provided from iOS CoreImage framework. Second, we construct a weighted local structure model for landmarks to utilize the edge points of the face contour. Third, we build a modified model definition and fitting more landmarks than the classical ASM. And last, we extend and build two-dimensional profile model for detecting faces within input images. The proposed algorithm is evaluated on experimental test set containing over 500 face images, and found to successfully extract facial feature points, clearly outperforming the original ASM.