• Title/Summary/Keyword: ASK(Amplitude-Shift Keying) modulation

Search Result 19, Processing Time 0.02 seconds

A Study of the Digital Modulation using DSP (DSP를 이용한 디지털 변조에 관한 연구)

  • 최상권;최진웅;김정국
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.89-92
    • /
    • 2001
  • In this paper, as a study of programmable software radio digital communication, we implemented ASK(Amplitude Shift Keying), FSK(Frequency Shift Keying), and PSK(Phase Shift Keying) modulation using programmable software(algorithm) of DSP(Digital Signal Processor). Moreover, it is possible to select one of those three modulation methods by realizing on single DSP. We adopted Motorola DSP56002 and Crystal CS4215(A/D and D/A converter) for our purpose. The DSP56002 is 24-bit and operates 20 MIPS at 40 MHz, and the CS4215 is 16-bit and supports the maximum 50 kHz sampling frequency.

  • PDF

Transmission Performance Comparison of Direction Detection-Based 100-Gb/s Modulation Formats for Metro Area Optical Networks

  • Chung, Hwan Seok;Chang, Sun Hyok;Lee, Jonghyun;Kim, Kwangjoon
    • ETRI Journal
    • /
    • v.34 no.6
    • /
    • pp.800-806
    • /
    • 2012
  • Transmission performances of direct detection-based 100-Gb/s modulation formats are investigated and compared for metro area optical networks. The effects of optical signal-to-noise ratio sensitivity, chromatic dispersion, cross-channel nonlinearity, and transmission distance on the performance of differential 8-ary phase-shift keying (D8PSK), differential phase-shift keying plus three-level amplitude-shift keying (DPSK+3ASK), and dual-carrier differential quaternary phase-shift keying (DC-DQPSK) are evaluated. The performance of coherent dual-polarization quadrature phase-shift keying (DP-QPSK) with block phase estimation and coherent DP-QPSK with digital differential detection are also presented for reference. According to our analysis, all three direct detection modulation formats could transmit a 100-Gb/s signal over several hundred kilometers of a single-mode fiber link. The results also show that DC-DQPSK outperforms D8PSK and DPSK+3ASK, and the performance of DC-DQPSK is comparable to that of coherent DP-QPSK with digital differential detection. The maximum transmission distance of DC-DQPSK is over 1,000 km, which is enough distance for metro applications.

A Comparison of the Error Rate Performances of Various Digitally Modulated Signals in the Environment of Tone/Multiple Interferer (톤간섭 및 다중간섭하에서 제반 디지탈 변조신호의 오율특성 비교)

  • 공병옥;조성준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.10
    • /
    • pp.797-810
    • /
    • 1990
  • The error rate equations of digitally modulated signals transmitted through the Gaussian noise and tone multiple interference channel have been derived. Using the derived equations of error probabilities in the environments of Gaussian noise tone interferer and Gaussian noise multiple interferer, the error rate performances of various digitally modulated signals have been evaluated, and compared in graphs as a function of average carrier to tone interferer power ratio(CIR), average carrier to multiple interferer power ratio(CIT) and the average carrer-to-Gaussian noise powr ratio(CIR). In this paper, the modulation schemes such as amplitude shift keying (ASK), phase shift keying(PSK), frequency shift keying(FSK), minimum shift keying(MSK), quadrature amplitud modulation(QAM) and amplitude phase shift keying(APK) have been selected for the study of performance comparison. The results of comparison show us that, in low bits/sec/Hz, PSK is superior to the other schemes, but in high bits/sec/Hz, mixed multi ary type is better than single multi ary type. And in strong noise evironment, the multiple interferer has much influence than tone interferer, however, in low noise environment. the mojor error factor is tone interferer. But tone interference effect nearly disappears over specified CIR level about 20[dB]. And the modulation schemes using amplitude are heavily influenced by multiple interference.

  • PDF

Study of Optical Transmission Performance in IP-over-WDM Networks Based on FSK/ASK Combined Modulation Format

  • Xiangjun, Xin;Andre, Paulo Sergio de Brito;Teixeira, Antonio Luis Jesus;Monteiro, Paulo P.;Rocha, Jose R. F. da
    • ETRI Journal
    • /
    • v.27 no.3
    • /
    • pp.267-272
    • /
    • 2005
  • The transmission performance of optical labeling based on a combined frequency shift keying/amplitude shift keying (FSK/ASK) format is studied by numerical simulation. The simulation demonstrates that the bit-error ratio (BER) characteristic of an ASK signal is limited by the extinction ratio, received optical power, and dispersion, simultaneously. However, an FSK signal is mainly limited by the extinction ratio (ER) and received optical power when the peak spectrum, which is used to detect the FSK signal, is relatively narrow.

  • PDF

UHF RFID Hand-Held Transceiver System with Multi-protocol and Multi-Standard supplements (Multi-Protocol/Multi-Standard 지원 UHF RFID 휴대용 리더 시스템)

  • Park, Kyong-Tae;Roh, Hyoung-Hwan;Park, Jun-Seok
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.147-150
    • /
    • 2007
  • This paper presents an advanced RFID reader system implementing multi-protocols and multi-standards at 900MHz. In accordance with the strict regulations specified by ISO 18000-6 B-Type and EPC Global Gen 2, we have designed corresponding systemic factors which meet the domestic radio frequency utilizing bands of 910-914MHz. In addition, we develop numerous crucial factors of system compatibility options including SSB (Single-Side Band) and DSB (Double-Side Band) specifications, also OOK (On-Off Keying), ASK (Amplitude Shift Keying) and PR-ASK (Phase Reversed-Amplitude Shift Keying) modulation formula. Remarkable technical features of system in this paper can be the direct conversion routines using I/Q Modulation/Demodulation respectively, and Full-Duplex formulation operating at identical frequency bands.

  • PDF

Acoustic Wireless Communication from Smart Phone to Hearing Aid (스마트폰에서 보청기로의 음향 무선 통신)

  • Jarng, Soon Suck
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.2
    • /
    • pp.91-97
    • /
    • 2015
  • In this paper, wireless communication from a smart phone to a hearing aid using audible frequency band sound was considered. 1kHz single channel carrier frequency was applied for amplitude shift keying (ASK) binary data modulation, and the result of the transmission and reception was tested. The overall system process was precisely explained and experimentally evaluated. The result will be applied for realizing a digital hearing aid with remote control feature by a smart phone.

Bidirectional Magnetic Wireless Communication System under Inductive Power Transfer capable of Amplitude-Shift Keying(ASK) Modulation Control (자기유도 무선전력전송시 진폭편이변조 제어가 가능한 양방향 자기장 무선통신 시스템)

  • Choi, Byeung-Guk;Lee, Eun-Soo;Rim, Chun-Taek
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.3
    • /
    • pp.275-281
    • /
    • 2016
  • A novel bidirectional magnetic wireless communication system is proposed in this study. This system provides the communication capability between the source and load sides by high-frequency signal while wireless power is transferred. Contrary to the conventional wireless communication systems using complex IC circuit and active components, the proposed system is simply composed of passive components. It is practical and beneficial for environmental robustness, cost effectiveness, and simple implementation. The detailed static analysis of the proposed system for power and communication lines is established. The proposed system is experimentally verified, and results show that a 0.1 voltage gain for communication line is obtained while a 2.0 voltage gain for the power line is achieved. The proposed system is adequate for practical applications as it allows the inductive power transfer system to wirelessly and easily communicate between the source and load sides.

A 13.56 MHz Radio Frequency Identification Transponder Analog Front End Using a Dynamically Enabled Digital Phase Locked Loop

  • Choi, Moon-Ho;Yang, Byung-Do;Kim, Nam-Soo;Kim, Yeong-Seuk;Lee, Soo-Joo;Na, Kee-Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.1
    • /
    • pp.20-23
    • /
    • 2010
  • The analog front end (AFE) of a radio frequency identification transponder using the ISO 14443 type A standard with a 100% amplitude shift keying (ASK) modulation is proposed in this paper and verified by circuit simulations and measurements. This AFE circuit, using a 13.56 MHz carrier frequency, consists of a rectifier, a modulator, a demodulator, a regulator, a power on reset, and a dynamically enabled digital phase locked loop (DPLL). The DPLL, with a charge pump enable circuit, was used to recover the clock of a 100% modulated ASK signal during the pause period. A high voltage lateral double diffused metal-oxide semiconductor transistor was used to protect the rectifier and the clock recovery circuit from high voltages. The proposed AFE was fabricated using the $0.18\;{\mu}m$ standard CMOS process, with an AFE core size of $350\;{\mu}m\;{\times}\;230\;{\mu}m$. The measurement results show that the DPLL, using a demodulator output signal, generates a constant 1.695 MHz clock during the pause period of the 100% ASK signal.

A study on the frequency sharing TA Radio with the RFID in the 900MHz band (900MHz대역에서 TA Radio와 RFID의 주파수 공유에 관한 연구)

  • Moon, Hun-Il;Yu, Seung-Duk;Hong, Wan-Pyo
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.3
    • /
    • pp.367-374
    • /
    • 2010
  • In this paper, the frequencies sharing possibility between TA(TalkAround) Radios and RFID system in 900MHz frequency band have been studied. The modulation technic for FHSS(Frequency Hopping Spread Spectrum) of TA is digital FSK and RFID system adapts digital ASK modulation technic. The communication mode of the tested RFID system for frequencies sharing possibility was FHSS. The field test was performed by five scenarios. The RFID field testing system for the frequencies sharing possibility was composed of four tags and two main devices made in USA. Four TA and Egilant spectrum analyzer was used for testing. The frequencies sharing possibility by differentiated modulation was theoretically analyzed. As result of simulation, it was proved that the frequencies sharing between each other modulation system is possible. And also as result of field testing it was confirmed that the signal of TA Radios have no effect on the signal of RFID system.

Verification of the feasibility of higher-order modulation for long-range communication in deep water (심해 장거리 통신에서의 고차 변조 기법의 활용 가능성 검증)

  • Kim, Donghyeon;Kim, J.S.;Hahn, Joo Young
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.5
    • /
    • pp.428-438
    • /
    • 2021
  • For long-range communication in deep water, low carrier frequency is efficient due to a decrease in transmission loss. However, there is a limitation in that the data rate decreases due to a narrow bandwith. In order to increase the data rate in an environment with a limited bandwidth, it is necessary to design a higher-order modulation scheme. This paper analyzes the long-range communication data modulated by higher-order modulation schemes. The long-range communication experiment (23 km ~) was conducted in East Sea in October 2020. During the experiment, a vertical line array was utilized and communication sequences were modulated by Phase Shift Keying (PSK) and Quadrature Amplitude Modulation (QAM) schemes and transmitted by a towed source. In more detail, PSK modulation consists of quadrature PSK and 8PSK, QAM modulation consists of 8QAM and 16QAM. Time reversal processing is applied to mitigate inter-symbol interference by utilizing the correlation between received signals and channel impulse responses. All modulation schemes show successful results at 23 km range, demonstrating the feasibility of higher-order modulation in long-range communication.