DOI QR코드

DOI QR Code

Verification of the feasibility of higher-order modulation for long-range communication in deep water

심해 장거리 통신에서의 고차 변조 기법의 활용 가능성 검증

  • Received : 2021.07.06
  • Accepted : 2021.08.18
  • Published : 2021.09.30

Abstract

For long-range communication in deep water, low carrier frequency is efficient due to a decrease in transmission loss. However, there is a limitation in that the data rate decreases due to a narrow bandwith. In order to increase the data rate in an environment with a limited bandwidth, it is necessary to design a higher-order modulation scheme. This paper analyzes the long-range communication data modulated by higher-order modulation schemes. The long-range communication experiment (23 km ~) was conducted in East Sea in October 2020. During the experiment, a vertical line array was utilized and communication sequences were modulated by Phase Shift Keying (PSK) and Quadrature Amplitude Modulation (QAM) schemes and transmitted by a towed source. In more detail, PSK modulation consists of quadrature PSK and 8PSK, QAM modulation consists of 8QAM and 16QAM. Time reversal processing is applied to mitigate inter-symbol interference by utilizing the correlation between received signals and channel impulse responses. All modulation schemes show successful results at 23 km range, demonstrating the feasibility of higher-order modulation in long-range communication.

심해 장거리 통신에서는 전달 손실이 적은 낮은 반송 주파수가 효율적이지만, 좁은 대역폭을 가지는 제약이 따른다. 대역폭의 감소는 전송률의 감소를 의미하며, 제한된 대역폭을 가진 환경에서 전송률을 증가시키기 위해서는 고차 변조 기법으로 설계될 필요가 있다. 본 논문은 고차 변조 기법으로 설계된 장거리 수중음향통신 데이터 분석 결과를 제시한다. 2020년 10월 동해에서 예인 음원을 이용한 장거리 해상실험 (23 km ~)이 수행되었고, 수직 선 배열을 통해 데이터를 획득하였다. 본 연구팀은 위상 변조 방식이 적용된 Phase Shift Keying (PSK) 계열 신호와 위상 및 진폭 변조 방식이 적용된 Quadrature Amplitude Modulation (QAM) 계열의 신호를 송신하였으며, 구체적으로 각 계열별 두 종류의 신호를 설계하였다; 1) PSK : quadrature PSK and 8PSK, 2) QAM : 8QAM and 16QAM. 데이터 분석을 위해 수신 신호와 채널 임펄스 응답 사이의 상관성을 활용하여 심볼 간 간섭을 완화시키는 시역전 처리가 적용되었다. 23 km 거리 데이터에 대해 모든 변조 방식이 성공적으로 복조됨으로써 장거리 환경에서 고차 변조 기법의 활용 가능성을 실험적으로 확인하였다.

Keywords

Acknowledgement

This work was supported by the Agency for Defense Development, South Korea, under Grant UD200010DD and Low frequency Underwater Research Laboratory.

References

  1. Y. Zhou, A. Song, and F. Tong, "Underwater acoustic channel characteristics and communication performance at 85 kHz," J. Acoust. Soc. Am. 142, EL350-EL355 (2017). https://doi.org/10.1121/1.5006141
  2. D. B. Kilfoyle and A. B. Baggeroer, "The state of the art in underwater acoustic telemetry," IEEE J. Ocean Eng. 25, 4-27 (2000). https://doi.org/10.1109/48.820733
  3. Y. Kida, M. Deguchi, and T. Shimura, "Experimental results for a high-rate underwater acoustic communication in deep sea for a manned submersible SHINKAI 6500," J. Marine Acoust. Soc. Jpn. 43, 197-203 (2018).
  4. M. Stojanovic, J. Catipovic, and J. G. Proakis, Acoustic Signal Processing for Ocean Exploration (Springer, Dordrecht, 1993), pp.607-612.
  5. M. Stojanovic, J. Catipovic, J . G. Proakis, "Adaptive multichannel combining and equalization for underwater acoustic communications," J. Acoust. Soc. Am. 94, 1621-1631 (1993). https://doi.org/10.1121/1.408135
  6. A. Plaisant, "Long range acoustic communications," Proc. IEEE OCEANS'98 Conference, 1 (1998).
  7. T. Shimura, Y. Watanabe, H. Ochi, and T. Hattori, "Basic at-sea experiment for long horizontal time-reversal communication in deep ocean," Proc. Acoustics '08, 10375-10380 (2008).
  8. H. C. Song, W. A. Kuperman, and W. S. Hodgkiss, "Basin-scale time reversal communications," J. Acoust. Soc. Am. 125, 212-217 (2009). https://doi.org/10.1121/1.3021435
  9. H. C. Song and M. Dzieciuch, "Feasibility of global-scale synthetic aperture communications," J. Acoust. Soc. Am. 125, 8-10 (2009). https://doi.org/10.1121/1.3035830
  10. T. Shimura, H. Ochi, Y. Watanabe, and T. Hatton, "Experiment results of time-reversal communication at the range of 300 km," Jpn. J. Appl. Phys. 49, 07HG11 (2010).
  11. H. C. Song, S. Cho, T. Kang, W. S. Hodgkiss, and J. R. Preston, "Long-range acoustic communication in deep water using a towed array," J. Acoust. Soc. Am. 129, EL71-EL75 (2011). https://doi.org/10.1121/1.3554707
  12. T. Shimura, H. Ochi, and Y. Watanabe, "Time - reversal communication in deep ocean - results of recent experiments," Proc. 2011 IEEE Symposium on Underwater Technology and Workshop on Scienfitic Use of Submarine Cables and Related Technologies, 1-5 (2011).
  13. H. C. Song, "Acoustic communication in deep water exploiting multiple beams with a horizontal array," J. Acoust. Soc. Am. 132, EL81-EL87 (2012). https://doi.org/10.1121/1.4734242
  14. H. C. Song and W. S. Hodgkiss, "Diversity combining for long-range acoustic communication in deep water," J. Acoust. Soc. Am. 132, EL68-EL73 (2012). https://doi.org/10.1121/1.4731639
  15. T. Kang, H. C. Song, and W. S. Hodgkiss,, "Long-range multi-carrier acoustic communication in deep water using a towed horizontal array," J. Acoust. Soc. Am. 131, 4665-4671 (2012). https://doi.org/10.1121/1.4711009
  16. T. Shimura, Y. Watanabe, H. Ochi, and H. C. Song, "Long-range time reversal communication in deep water : Experimental results," J. Acoust. Soc. Am. 132, EL49-EL53 (2012). https://doi.org/10.1121/1.4730038
  17. T. Shimura, H. Ochi, and H. C. Song, "Experimental demonstration of multiuser communication in deep water using time reversal," J. Acoust. Soc. Am. 134, 3223-3229 (2013). https://doi.org/10.1121/1.4818839
  18. Z. Liu. K. Yoo, T. C. Yang, S. E. Cho, H. C. Song, and D. E. Ensberg "Long-range double-differentially coded spread-spectrum acoustic communications with a towed array," IEEE J. Ocean Eng. 39, 482-490 (2014). https://doi.org/10.1109/JOE.2013.2264994
  19. T. Shimura, Y. Kida, M. Deguchi, Y. Watanabe, and H. Ochi, "At-sea experiment of adaptive time-reversal multiuser communication in the deep ocean," Jpn. J. Appl. Phys. 54, 07HG02 (2015). https://doi.org/10.7567/JJAP.54.07HG02
  20. J. Lee, H. Lee, K. Kim, and W. Kim, "Sea trial results of long range underwater acoustic communication based on frequency modulation in the East Sea" (in Korean), J. Acoust. Soc. Kr. 38, 371-377 (2019).
  21. H. S. Kim, S. H. Kim, J. W. Choi, and H. S. Bae,, "Bidirectional equalization based on error propagation detection in long-range underwater acoustic communication," Jpn. J. Appl. Phys. 58, SGGF01 (2019). https://doi.org/10.7567/1347-4065/ab1130
  22. H. Park, D. Kim, J. S. Kim, J. Hahn, and J. Park, "Performance improvement of long-range underwater acoustic communication in deep water using spatiotemporal diversity" (in Korean), J. Acoust. Soc. Kr. 38, 587-592 (2019).
  23. D. Kim, H. Park, J. S. Kim, J. Hahn, and J. Park, "Performance analysis of underwater acoustic communication based on beam diversity in deep water" (in Korean), J. Acoust. Soc. Kr. 38, 678-686 (2019).
  24. G. F. Edelmann, T. Akai, W. S. Hodgkiss, S. Kim, W. A. Kuperman, and H. C. Song, "An initial demonstration of underwater acoustic communication using time reversal," IEEE J. Ocean Eng. 27, 602-609 (2002). https://doi.org/10.1109/JOE.2002.1040942
  25. G. F. Edelmann, H. C. Song, S. Kim, W. S. Hodgkiss, W. A. Kuperman, and T. Akai, "Underwater acoustic communication using time reversal," IEEE J. Ocean Eng. 30, 852-864 (2005). https://doi.org/10.1109/JOE.2005.862137
  26. H. C. Song, W. S. Hodgkiss, W. A. Kuperman, M. Stevenson, and T. Akai, "Improvement of time-reversal communications using adaptive channel equalizers," IEEE J. Ocean Eng. 31, 487-496 (2006). https://doi.org/10.1109/JOE.2006.876139
  27. M. I. Skolnik, Introduction to Radar Systems (McGraw-Hill, Boston, 2001), pp. 411-420.
  28. H. C. Song, W. S. Hodgkiss, W. A. Kuperman, W. J. Higley, K. Raghukumar, T. Akai, and M. Stevenson, "Spatial diversity in passive time reversal communication," J. Acoust. Soc. Am. 120, 2067-2076 (2006). https://doi.org/10.1121/1.2338286
  29. H. C. Song, "An overview of underwater time-reversal communication," IEEE J. Ocean Eng. 41, 644-655 (2016). https://doi.org/10.1109/JOE.2015.2461712