• 제목/요약/키워드: ART Algorithm

검색결과 579건 처리시간 0.023초

Matrix completion based adaptive sampling for measuring network delay with online support

  • Meng, Wei;Li, Laichun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권7호
    • /
    • pp.3057-3075
    • /
    • 2020
  • End-to-end network delay plays an vital role in distributed services. This delay is used to measure QoS (Quality-of-Service). It would be beneficial to know all node-pair delay information, but unfortunately it is not feasible in practice because the use of active probing will cause a quadratic growth in overhead. Alternatively, using the measured network delay to estimate the unknown network delay is an economical method. In this paper, we adopt the state-of-the-art matrix completion technology to better estimate the network delay from limited measurements. Although the number of measurements required for an exact matrix completion is theoretically bounded, it is practically less helpful. Therefore, we propose an online adaptive sampling algorithm to measure network delay in which statistical leverage scores are used to select potential matrix elements. The basic principle behind is to sample the elements with larger leverage scores to keep the traits of important rows or columns in the matrix. The amount of samples is adaptively decided by a proposed stopping condition. Simulation results based on real delay matrix show that compared with the traditional sampling algorithm, our proposed sampling algorithm can provide better performance (smaller estimation error and less convergence pressure) at a lower cost (fewer samples and shorter processing time).

Spatial Statistic Data Release Based on Differential Privacy

  • Cai, Sujin;Lyu, Xin;Ban, Duohan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권10호
    • /
    • pp.5244-5259
    • /
    • 2019
  • With the continuous development of LBS (Location Based Service) applications, privacy protection has become an urgent problem to be solved. Differential privacy technology is based on strict mathematical theory that provides strong privacy guarantees where it supposes that the attacker has the worst-case background knowledge and that knowledge has been applied to different research directions such as data query, release, and mining. The difficulty of this research is how to ensure data availability while protecting privacy. Spatial multidimensional data are usually released by partitioning the domain into disjointed subsets, then generating a hierarchical index. The traditional data-dependent partition methods need to allocate a part of the privacy budgets for the partitioning process and split the budget among all the steps, which is inefficient. To address such issues, a novel two-step partition algorithm is proposed. First, we partition the original dataset into fixed grids, inject noise and synthesize a dataset according to the noisy count. Second, we perform IH-Tree (Improved H-Tree) partition on the synthetic dataset and use the resulting partition keys to split the original dataset. The algorithm can save the privacy budget allocated to the partitioning process and obtain a more accurate release. The algorithm has been tested on three real-world datasets and compares the accuracy with the state-of-the-art algorithms. The experimental results show that the relative errors of the range query are considerably reduced, especially on the large scale dataset.

An Improved Adaptive Scheduling Strategy Utilizing Simulated Annealing Genetic Algorithm for Data Center Networks

  • Wang, Wentao;Wang, Lingxia;Zheng, Fang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권11호
    • /
    • pp.5243-5263
    • /
    • 2017
  • Data center networks provide critical bandwidth for the continuous growth of cloud computing, multimedia storage, data analysis and other businesses. The problem of low link bandwidth utilization in data center network is gradually addressed in more hot fields. However, the current scheduling strategies applied in data center network do not adapt to the real-time dynamic change of the traffic in the network. Thus, they fail to distribute resources due to the lack of intelligent management. In this paper, we present an improved adaptive traffic scheduling strategy utilizing the simulated annealing genetic algorithm (SAGA). Inspired by the idea of software defined network, when a flow arrives, our strategy changes the bandwidth demand dynamically to filter out the flow. Then, SAGA distributes the path for the flow by considering the scheduling of the different pods as well as the same pod. It is implemented through software defined network technology. Simulation results show that the bisection bandwidth of our strategy is higher than state-of-the-art mechanisms.

컴퓨터 게임 환경에서 일반화 가시성 그래프를 이용한 경로찾기 (Path-finding by using generalized visibility graphs in computer game environments)

  • 유견아;전현주
    • 한국시뮬레이션학회논문지
    • /
    • 제14권3호
    • /
    • pp.21-31
    • /
    • 2005
  • In state-of-the-art games, characters can move in a goal-directed manner so that they can move to the goal position without colliding obstacles. Many path-finding methods have been proposed and implemented for these characters and most of them use the A* search algorithm. When .the map is represented with a regular grid of squares or a navigation mesh, it often takes a long time for the A* to search the state space because the number of cells used In the grid or the mesh increases for higher resolution. Moreover the A* search on the grid often causes a zigzag effect, which is not optimal and realistic. In this paper we propose to use visibility graphs to improve the search time by reducing the search space and to find the optimal path. We also propose a method of taking into account the size of moving characters in the phase of planning to prevent them from colliding with obstacles as they move. Simulation results show that the proposed method performs better than the grid-based A* algorithm in terms of the search time and space and that the resulting paths are more realistic.

  • PDF

A Heuristic Polynomial Time Algorithm for Crew Scheduling Problem

  • Lee, Sang-Un
    • 한국컴퓨터정보학회논문지
    • /
    • 제20권11호
    • /
    • pp.69-75
    • /
    • 2015
  • This paper suggests heuristic polynomial time algorithm for crew scheduling problem that is a kind of optimization problems. This problem has been solved by linear programming, set cover problem, set partition problem, column generation, etc. But the optimal solution has not been obtained by these methods. This paper sorts transit costs $c_{ij}$ to ascending order, and the task i and j crew paths are merged in case of the sum of operation time ${\Sigma}o$ is less than day working time T. As a result, we can be obtain the minimum number of crews $_{min}K$ and minimum transit cost $z=_{min}c_{ij}$. For the transit cost of specific number of crews $K(K>_{min}K)$, we delete the maximum $c_{ij}$ as much as the number of $K-_{min}K$, and to partition a crew path. For the 5 benchmark data, this algorithm can be gets less transit cost than state-of-the-art algorithms, and gets the minimum number of crews.

Harmonic-Mean-Based Dual-Antenna Selection with Distributed Concatenated Alamouti Codes in Two-Way Relaying Networks

  • Li, Guo;Gong, Feng-Kui;Chen, Xiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권4호
    • /
    • pp.1961-1974
    • /
    • 2019
  • In this letter, a harmonic-mean-based dual-antenna selection scheme at relay node is proposed in two-way relaying networks (TWRNs). With well-designed distributed orthogonal concatenated Alamouti space-time block code (STBC), a dual-antenna selection problem based on the instantaneous achievable sum-rate criterion is formulated. We propose a low-complexity selection algorithm based on the harmonic-mean criterion with linearly complexity $O(N_R)$ rather than the directly exhaustive search with complexity $O(N^2_R)$. From the analysis of network outage performance, we show that the asymptotic diversity gain function of the proposed scheme achieves as $1/{\rho}{^{N_R-1}}$, which demonstrates one degree loss of diversity order compared with the full diversity. This slight performance gap is mainly caused by sacrificing some dual-antenna selection freedom to reduce the algorithm complexity. In addition, our proposed scheme can obtain an extra coding gain because of the combination of the well-designed orthogonal concatenated Alamouti STBC and the corresponding dual-antenna selection algorithm. Compared with the common-used selection algorithms in the state of the art, the proposed scheme can achieve the best performance, which is validated by numerical simulations.

An Adaptive Iterative Algorithm for Motion Deblurring Based on Salient Intensity Prior

  • Yu, Hancheng;Wang, Wenkai;Fan, Wenshi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권2호
    • /
    • pp.855-870
    • /
    • 2019
  • In this paper, an adaptive iterative algorithm is proposed for motion deblurring by using the salient intensity prior. Based on the observation that the salient intensity of the clear image is sparse, and the salient intensity of the blurred image is less sparse during the image blurring process. The salient intensity prior is proposed to enforce the sparsity of the distribution of the saliency in the latent image, which guides the blind deblurring in various scenarios. Furthermore, an adaptive iteration strategy is proposed to adjust the number of iterations by evaluating the performance of the latent image and the similarity of the estimated blur kernel. The negative influence of overabundant iterations in each scale is effectively restrained in this way. Experiments on publicly available image deblurring datasets demonstrate that the proposed algorithm achieves state-of-the-art deblurring results with small computational costs.

동적 및 정적 물체 회피를 위한 정밀 도로지도 기반 지역 경로 계획 (High-Definition Map-based Local Path Planning for Dynamic and Static Obstacle Avoidance)

  • 정의곤;송원호;명현
    • 로봇학회논문지
    • /
    • 제16권2호
    • /
    • pp.112-121
    • /
    • 2021
  • Unlike a typical small-sized robot navigating in a free space, an autonomous vehicle has to travel in a designated road which has lanes to follow and traffic rules to obey. High-Definition (HD) maps, which include road markings, traffic signs, and traffic lights with high location accuracy, can help an autonomous vehicle avoid the need to detect such challenging road surroundings. With space constraints and a pre-built HD map, a new type of path planning algorithm can be conceived as a substitute for conventional grid-based path planning algorithms, which require substantial planning time to cover large-scale free space. In this paper, we propose an obstacle-avoiding, cost-based planning algorithm in a continuous space that aims to pursue a globally-planned path with the help of HD map information. Experimentally, the proposed algorithm is shown to outperform other state-of-the-art path planning algorithms in terms of computation complexity in a typical urban road setting, thereby achieving real-time performance and safe avoidance of obstacles.

Vibration-based delamination detection of composites using modal data and experience-based learning algorithm

  • Luo, Weili;Wang, Hui;Li, Yadong;Liang, Xing;Zheng, Tongyi
    • Steel and Composite Structures
    • /
    • 제42권5호
    • /
    • pp.685-697
    • /
    • 2022
  • In this paper, a vibration-based method using the change ratios of modal data and the experience-based learning algorithm is presented for quantifying the position, size, and interface layer of delamination in laminated composites. Three types of objective functions are examined and compared, including the ones using frequency changes only, mode shape changes only, and their combination. A fine three-dimensional FE model with constraint equations is utilized to extract modal data. A series of numerical experiments is carried out on an eight-layer quasi-isotropic symmetric (0/-45/45/90)s composited beam for investigating the influence of the objective function, the number of modal data, the noise level, and the optimization algorithms. Numerical results confirm that the frequency-and-mode-shape-changes-based technique yields excellent results in all the three delamination variables of the composites and the addition of mode shape information greatly improves the accuracy of interface layer prediction. Moreover, the EBL outperforms the other three state-of-the-art optimization algorithms for vibration-based delamination detection of composites. A laboratory test on six CFRP beams validates the frequency-and-mode-shape-changes-based technique and confirms again its superiority for delamination detection of composites.

A New CSR-DCF Tracking Algorithm based on Faster RCNN Detection Model and CSRT Tracker for Drone Data

  • Farhodov, Xurshid;Kwon, Oh-Heum;Moon, Kwang-Seok;Kwon, Oh-Jun;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • 한국멀티미디어학회논문지
    • /
    • 제22권12호
    • /
    • pp.1415-1429
    • /
    • 2019
  • Nowadays object tracking process becoming one of the most challenging task in Computer Vision filed. A CSR-DCF (channel spatial reliability-discriminative correlation filter) tracking algorithm have been proposed on recent tracking benchmark that could achieve stat-of-the-art performance where channel spatial reliability concepts to DCF tracking and provide a novel learning algorithm for its efficient and seamless integration in the filter update and the tracking process with only two simple standard features, HoGs and Color names. However, there are some cases where this method cannot track properly, like overlapping, occlusions, motion blur, changing appearance, environmental variations and so on. To overcome that kind of complications a new modified version of CSR-DCF algorithm has been proposed by integrating deep learning based object detection and CSRT tracker which implemented in OpenCV library. As an object detection model, according to the comparable result of object detection methods and by reason of high efficiency and celerity of Faster RCNN (Region-based Convolutional Neural Network) has been used, and combined with CSRT tracker, which demonstrated outstanding real-time detection and tracking performance. The results indicate that the trained object detection model integration with tracking algorithm gives better outcomes rather than using tracking algorithm or filter itself.