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Abstract 
 

End-to-end network delay plays an vital role in distributed services. This delay is used to 
measure QoS (Quality-of-Service). It would be beneficial to know all node-pair delay 
information, but unfortunately it is not feasible in practice because the use of active probing 
will cause a quadratic growth in overhead. Alternatively, using the measured network delay to 
estimate the unknown network delay is an economical method. In this paper, we adopt the 
state-of-the-art matrix completion technology to better estimate the network delay from 
limited measurements. Although the number of measurements required for an exact matrix 
completion is theoretically bounded, it is practically less helpful. Therefore, we propose an 
online adaptive sampling algorithm to measure network delay in which statistical leverage 
scores are used to select potential matrix elements. The basic principle behind is to sample the 
elements with larger leverage scores to keep the traits of important rows or columns in the 
matrix. The amount of samples is adaptively decided by a proposed stopping condition. 
Simulation results based on real delay matrix show that compared with the traditional 
sampling algorithm, our proposed sampling algorithm can provide better performance 
(smaller estimation error and less convergence pressure) at a lower cost (fewer samples and 
shorter processing time). 
 
 
Keywords: Network delay, network measurement, matrix completion, adaptive sampling, 
leverage score 
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1. Introduction 

Network delay, also called network distance, plays an vital role in global distributed services 
and applications, such as content distribution networks (CDNs) [1], peer-to-peer file sharing 
[2], [3], proximity-aware distributed hash tables [4] and overlay routing [5] etc. The advantage 
of these systems is that they can flexibly select communication peers that respond quickly, 
where the end-to-end network delay is used as an indicator of QoS (Quality-of-Service). For 
example, a client in a CDN can choose the mirror site with the highest bandwidth to download 
web objects. 

However, it is not feasible to obtain the network delay between all transmission pairs 
through network measurements, particularly in large-scale networks. Since the cost of active 
probing increases quadratically with the size of the network, on-demand measurements are 
expensive and time-consuming. Therefore, an idea of estimating the unknown pair-wise 
network delay from limited observed measurements, arises and motivates plentiful research on 
this topic. 

A Network Coordinate System (NCS) [6]-[8] predicts network delays as Euclidean 
distances in a virtual geometric space by mapping network nodes to coordinates in this space, 
which is also known as Euclidean embedding. This kind of approach makes assumptions of 
certain Euclidean distance properties, e.g., symmetry and triangle inequality. However, such 
assumptions may not always hold, e.g., triangle inequality violations (TIVs) are commonly 
found in practice [9], [10]. To overcome these problems, matrix factorization are used [11], 
[12]. The basic idea is to decompose an approximated large network delay matrix into two 
smaller matrices, which can represent the asymmetric delays or the delays that violate triangle 
inequality. Matrix factorization based approaches model network delays by a matrix with a 
fixed rank. However, the exact rank of the delay matrix can hardly be obtained in advance. 

In recent years, matrix completion by rank minimization has become an important research 
direction for network delay estimation[13], [14]. These approaches, compared to Euclidean 
embedding or matrix factorization, are not limited by triangle inequality or predetermined rank. 
Several studies [15]-[18] reported sufficient conditions to recover low-rank a matrix from 
some observations, that is the minimum number of samples required to successfully recover a 
high probability matrix. However, there are some limits under these conditions: 1) the matrix 
elements are uniformly and randomly sampled, and 2) the incoherence property of the matrix 
is assumed, that is the singular vectors of the matrix are not concentrated on a few coordinates, 
but are roughly "expanded" uniformly. In real-world applications, the subset of observed 
elements is far from uniformly random [17]. For example, in the application of network delay 
measurement, we may not have the control of accessing any paired link to fulfill the 
uniform-sampling requirement. Moreover, the incoherence assumption is necessary due to the 
uniform sampling [19]. By such sampling, most of the mass of a coherent matrix could be 
missed since it is distributed among just a few values. On the contrary, if the elements with 
more mass can be sampled with higher probability, it would be possible to recover the matrix 
without incoherent requirement. 

In addition, although the number of samples used to successfully recovering the unknown 
low-rank matrix is theoretically bounded, how to find the minimum number of samples still 
requires practical guidance. Therefore, this paper mainly studies the sampling strategy in 
practical applications such as network delay measurement. Specifically, we deal with the 
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following two main problems: 1) which node-pair paths are selected for measurement, and 2) 
how many path samples are needed to successfully recover  an unknown delay matrix. 

An online adaptive sampling algorithm is invoked to address these problems. Specifically, 
we use statistical leverage score [20], [21] to select node-pair paths for measurement and a 
stopping criterion to determine the number of samples to complete the sampling. The basic 
principle behind is to sample the elements with larger leverage scores to keep the traits of 
important rows or columns in the matrix. The whole process of the proposed sampling 
algorithm is shown in Fig. 1, where five function blocks (red parts in brackets) are needed and 
will be described in detail in Section 4. After the initialization, leverage scores are used to 
quantify the local coherence property of the matrix, based on which the probability of each 
element is calculated. The sampling set is then updated by the ones with higher probability and 
the unknown matrix is recovered from these partial observations. The sampling process 
proceeds until a stopping criterion is reached. 

Initialization
uniform sampling

[UniformSampling]

Output:
completed matrix

Stopping
Criterion  reached?

[StropCriterion]

Matrix recovery
[MatrixRecovery]

Measurement
set update

[OmegaUpdate]

Sample probability
calculation
[Probcal]

Yes

No

 
Fig. 1. Block diagram of the proposed online adaptive sampling algorithm (The red parts in brackets 

correspond to the specific function blocks described in Section 4.4) 
 

The rest of the paper is organized as follows. Section 2 introduces related work on network 
delay estimation from limited measurements. Section 3 elaborates the problem in this paper. 
Section 4 describes the proposed online adaptive sampling algorithm for network delay 
measurement in detail. Section 5 evaluates the performance of the proposed algorithm based 
on real-world data of application-level RTTs (Round-Trip Times) and compares it with other 
traditionally used algorithms. Finally, Section 6 summarizes the whole paper and gives our 
future work. 
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2. Related Work 
Euclidean embedding based approaches have been proposed to estimate network delay 
without performing direct measurements. The key idea is to model the target network as a 
geometric space (typically a n-dimensional Euclidean space) and localize each node within the 
network by assigning them coordinates. The Euclidean distance between any two nodes, 
calculated by using these coordinates, can be used to predict network delay. 

In general, Euclidean embedding can be divided into two categories: landmark-based and 
decentralized approaches. A standard landmark-based system is Global Network Positioning 
(GNP) [6] which firstly embeds a network into a n-dimensional geometric space. GNP system 
requires at least n+1 landmarks to estimate a unique set of host coordinates. The landmarks 
need all-pairs measurements among themselves in order to obtain their coordinates in the 
space. The coordinates of an ordinary host are then calculated based on the coordinates of 
landmarks and the direct measurements between the host and all landmarks. To remove the 
constraints brought by landmarks, decentralized approaches are introduced to extend the 
landmark to any node or eliminate the fixed infrastructure completely. One representative 
implementation is Vivaldi [7] where each node within the network updates its coordinates 
with new measurements based on spring relaxation to find the minimal energy configurations. 

The performance of Euclidean embedding usually has the assumptions of distance 
symmetry and triangle inequality which may not hold in practice. Matrix factorization, on the 
contrary, overcomes these problems by assuming a fixed rank to the network delay matrix. 
Internet Distance Estimation Service (IDES) [11] employs Singular Value Decomposition 
(SVD) or Nonnegative Matrix Factorization (NMF) to recover a delay matrix in a 
landmark-based manner. DMFSGD algorithm proposed in [12] further settles the matrix 
factorization problem by using stochastic gradient descent in a decentralized way. 

Instead of assigning a fixed rank to the matrix, matrix completion through rank 
minimization has been recently adopted to estimate network delay. In [14], the authors solve a 
rank minimization problem without requiring a priori knowledge about the rank of the matrix 
for estimating network latency of personal device. The first bounds on the number required for 
an n n∗  matrix with rank r to be fully recovered by solving rank minimization is given in [15], 
where the bounds are proved to be 1.2( )O n rlogn  under assumptions of uniform sampling and 
incoherency. This result is further improved in [18] to be 2( )O rnlog nη  where η  was the 
coherence of a matrix (See Section IV-A). Although the number of measurements required for 
an exact matrix recovery is theoretically bounded, it is practically less helpful. In [13], the 
authors propose an information-based sampling scheme for matrix completion in network 
monitoring systems. However, as a nonuniformal sampling, the coherence of matrix is not 
considered. Moreover, based on our experimental observations, it is difficult for the algorithm 
to converge. 

Moreover, in [30], the authors invoked an active scheme that could measure the queuing 
delay on the Internet routers through an end-to-end path. The proposed solution used User 
Datagram Protocol (UDP) based probing packets to measure in a hop-by-hop manner, which 
was simple and self-sufficient. In [31], a novel Matrix Completion Technique based Data 
Collection (MCTDC) technique. Specifically, through matrix completion technique, the 
authors explored the multi-dimensional correlation of data to reduce the amount of data 
required while ensuring the QoS. In addition, in order to select the smallest set of suitable 
participants, the authors redefined the contribution degree as the ratio of the effective data 
from a given participant and the total amount of data. In [32], the authors designed a scalable 
and memory-efficient algorithm that used stochastic proximal gradient descent (SPGD) 
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method to deal with large-scale network problems. Specifically, the inherent low rank and 
time characteristics of the traffic matrix were used to transform the network estimation 
problem into a noise immune temporal matrix completion (NiTMC) model, and the mixture of 
Gaussian (MoG) was used to fit complex noise. In addition, the authors devised a 
convergence-guaranteed optimization algorithm based on the expectation maximization (EM) 
and block coordinate update (BCU) methods to solve the proposed model.  

 
Table 1. Summary of the used notations. 

Item Definition 
,M X  square matrix 
r  the rank of a matrix 
Ω  the set of locations corresponding to the sampled elements 
PΩ  the orthogonal projector onto the space of the matrix vanishing 

outside of Ω  
k  sampling epoch 

* 1
|| || ( )

n
ii

X Xσ
=

=∑  nuclear norm of X  

iσ  singular value 
r r

rI R ×∈  an identity matrix 
r rR ×Σ∈  the diagonal matrix with elements equal to the r  singular values of 

M  
ijp  the probability of each eatry ( , ), , (1, 2, )i j i j n∈ …  

2
| |

3 (2 )
c

crnlog n
Ω

=  
a universal constant factor 

( )TD ⋅  a shrink function 
ˆ ( | )X k m  the estimated matrix with m samples at the thk  epoch 

2
1 1

|| || | |
n n

F iji j
X X

= =
= ∑ ∑  

the Frobenius norm of X  

ε  a fixed tolerance, e.g., 310ε −= . 
 

kδ  the step size. For each iteration 
γ  a probability threshold 

3. Problem Formulation 

Consider an unknown matrix 1 2n nM R ×∈   with its rank ( 1, 2)r min n n . Here we assume 
M  is a square matrix (i.e., 1 2n n n= = ) for simplicity which does not lose the generality. The 
goal of matrix completion is to recover the full matrix information from a finite observable 
elements , ( , )ijM i j ∈Ω  where Ω  is the set of locations corresponding to the sampled 

elements (i.e., ( , )i j ∈Ω  if ijM  is sampled) with cardinality m . We can restore the matrix by 
minimizing the rank of the matrix 
 

min ( )
X

rank X    subject to ( , )ij ijX M i j= ∈Ω                                 (1) 
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As the value of a matrix rank is equal to the number of nonzero singular values of the matrix, 
the rationale behind is that the rank function in (1) counts the number of nonvanishing singular 
values.  However, Problem (1) is NP-hard. 

Alternatively, the matrix can be recovered by solving the following objective function 
 

*min || ||
X

X    subject to ( ) ( )P X P MΩ Ω=                                          (2) 

 
where * 1

|| || ( )n
ii

X Xσ
=

=∑  is the nuclear norm of X , the sum of the singular value 

amplitudes of the matrix. PΩ  is the orthogonal projector onto the space of the matrix 
vanishing outside of Ω   
 

      ( , )
( )

 0        
ij

ij

X i j
P X

otherwiseΩ

∈Ω
= 


                                         (3) 

Here, *|| ||X  in (2) is a convex function and can be solved by various methods such as 
semidefinite programming [15], iterative thresholding [22], or alternating minimization [23]. 

Unlike previous research on solving Problem (2) directly, this paper focuses on how to 
construct sampling set Ω  in (2) to better estimate the network delay matrix from the 
perspective of practical application. The construction of Ω  includes 1) identifying indexes 
( , )i j  belonging to Ω , and 2) the cardinality m  of Ω . 
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Fig. 2. Characteristic of Harvard-226 RTT dataset: (A) low-rank property (sum of top-6 singular 

values 
6

1 ii
σ

=∑ capture 99% of the total energy of the matrix (blue square curve); singular values after 

6σ start to fall below 5% of the largest one 1σ (red triangle curve)); (B) measurement frequency (3.9% 
of all the pair-node paths are not measured; most of the measured paths locates in the range of 40 to 56 

times) and (C) RTT distribution among the pair-node paths. 
 
For exact recovery of a network delay matrix, a premise is that the matrix should be 

low-rank. Fig. 2A shows the fraction of total variance captured by top-k singular values 
(

1 1
/k n

i ii i
σ σ

= =∑ ∑  blue square curve) of a typical RTT matrix from Harvard-226 dataset [12], 

[24]. It can be seen that the largest singular value 1σ  solely captures over 75% of the total 
energy of the matrix. 6σ  can be regarded as a threshold since the sum of top-6 singular values 
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6

1 ii
σ

=∑  already capture 99% of the total energy. Fig. 2A also shows the normalized singular 

values of the RTT matrix (red triangle curve) where 1σ  is normalized to be 1. The singular 
value decreases fast and those after 6σ  start to fall below 5% of 1σ .  

This observed low-rank characteristic of delay matrix is consistent with previous research 
on various types of network delay measurements [14], [25]. The overlapped or shared 
bottleneck links among network paths with nearby end nodes, leads to the redundancy in the 
use of links  across paths [12]. This therefore results in delay measurements on different paths 
being correlated, resulting in a matrix with a low or approximately low rank.  

4. Adaptive Sampling Algorithm 
In this section, the proposed online adaptive sampling algorithm is described in detail. We first 
present the statistical leverage score, and then the sampling stopping criterion. Next, singular 
value thresholding [22] as an example algorithm to recover an unknown matrix is introduced. 
Finally, we summarize the complete sampling algorithm. 

4.1 Leverage Score Based Sampling 

Consider rank- r SVD (Singular Value Decomposition) of n nM R ×∈ , TM U V= Σ , where 
U , n rV R ×∈  have orthonormal columns with T T

rU U V V I= =  ( r r
rI R ×∈ is an identity 

matrix) and r rR ×Σ∈  is a diagonal matrix with elements equal to the r  singular values of M . 
The commonly used matric to quantify the importance of rows and columns of M are its 

leverage scores and here the normalized ones are used and defined as 
 

2 2
2 2( ) || || || ( ,:) ||T

i i
n nM U e U i
r r

µ = =                                             (4) 

2 2
2 2( ) || || || ( ,:) ||T

j j
n nM V e V j
r r

n = =                                             (5) 

Where /i je e  denotes the /th thi j  standard basis element with appropriate dimensions, and 

( ), ( ) [0, ]i j
nM M
r

µ n ∈  for all , (1, 2, )i j n∈ … . It can be easily verified that 

1 1
( ) ( )n n

i ji j
M M nµ n

= =
= =∑ ∑ , since the summation of diagonal elements of ,T TUU VV  

both equals to r . 
It is proved in [26] that, if each element in M  is selected according to its leverage scores 
( ) ( )i jM Mµ ν+  with a probability , , (1, 2, )ijp i j n∈ …  satisfying 

 
2 (2 )( ( ) ( )) ,1( )ij i j

rlog np min c M M
n

m n≥ +                                     (6) 

 
Then there is a great chance for the nuclear norm minimization problem (2) to have a unique 
solution, c in (6) is a universal constant factor. We adopt (6) as the basis for selecting 
adaptively the entries to be measured in a network delay matrix and develop a practical 
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implementation for real-world applications. 
Based on (6), the required  amount of samples to successfully recover rank- r  matrix is 

 
2

2

1 1 1 1

(2 )[ ] ( ( ) ( )) (2 )
n n n n

ij i j
i j i j

rlog nE p p c M M crnlog n
n

µ n
= = = =

= ≥ + ≥∑∑ ∑∑            (7) 

 
Therefore the matrix can be recovered from 2( )O rnlog n  samples. On the contrary, for 
uniform sampling with an incoherence assumption mentioned previously, the number of 
required samples is around 2( ( ) )O M rnlog nη  with 

(1, ) (1, )
( ) ,{ }i ji n j n
M max max maxη m n

∈ ∈
= . 

Therefore, by removing the incoherence constraint, the sample complexity can be improved 
by up to a factor of  /n r  [27]. 

Although the required number of observed elements can be theoretically bounded by (7), it 
is practically less helpful because a universal constant factor c  can hardly be found. 
According to Hoeffding’s inequality that the number of observed elements concentrates 
around the expectation, a loose relaxation of (7) can then be assigned to the dimension of 
sampling set Ω  
 

2| | 3 (2 )crnlog nΩ =                                                                (8) 
 

Therefore 2
| |

3 (2 )
c

crnlog n
Ω

= , substituting it into (6), the probability of each eatry 

( , ), , (1, 2, )i j i j n∈ …  in the proposed sampling algorithm is obtained as 
 

  2
| | ( ( ) ( )),1
3

( )ij i jp min M M
n

m nΩ
= +                                             (9) 

 

4.2 Sampling Stopping Criterion 
Just having (9) is not enough since Ω  may not contain adequate samples for successfully 

recovering the matrix. In order to solve this problem, we adaptively sample elements until 
certain criteria are reached. 
It is pointed out in [13] that a low-rank matrix X  can be exactly recovered if the following 

condition holds 
ˆ ˆ( | ) ( 1| )X k m X k m C= + +                                                       (10) 

Where ˆ ( | )X k m  is the estimated matrix with m samples at the thk  epoch and ˆ ( )X m C+  is 
recovered with additional C  samples at the ( 1)thk +  epoch. Here we share similar heuristic 
given as follows. 

Sampling stopping criterion. Consider estimated network delay matrix at the thk  epoch, 
ˆ ( )X k , and the one estimated at the ( 1)thk +  epoch, ˆ ( 1)X k + . The adaptive sampling 

procedure can be considered to stop if ˆ ( )X k  and ˆ ( 1)X k +  satisfy  
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ˆ ˆ|| ( 1) ( ) ||
ˆ|| ( ) ||

F

F

X k X k
X k

ε+ −
≤                                                      (11) 

 

Where 2
1 1

|| || | |n n
F iji j

X X
= =

= ∑ ∑  denotes the Frobenius norm of X  and ε  is a fixed 

tolerance, e.g., 310ε −= . 

4.3 Matrix Recovery Algorithm 
A matrix recovery algorithm is used to solve Problem (2). Note that the proposed adaptive 

sampling algorithm is by no means necessarily restricted to any specific recovery algorithm 
for obtaining X̂ . Methods such as singular value thresholding (SVT) [22], interior-point 
method [28], or iterative reweighted least squares (IRLS) [29] can be used as long as they 
fulfill the requirements by applications on accuracy, computational overhead, or processing 
time etc. In this paper,  we take SVT as an example to solve Problem (2) because it is easy to 
implement its design. The complete SVT algorithm is given as follows 
 

( ) ( ( 1))TX k D Y k= −                                                          (12) 
( ) ( 1) ( ( ))kY k Y k P M X kδ Ω= − + −                                            (13) 

where ( ) ( ) ( )T T
T T Y Y Y Y T Y YD Y D U V U D V= Σ = Σ  is a shrink function which performs r -level 

( 0r ≥ ) soft thresholding on singular values of s matrix that 
 

1( ) ( (0, ) )
YT Y i i rD diag max σ τ ≤ ≤Σ = −                                           (14) 

And kδ  is the step size. For each iteration, SVT conducts SVD only once and performs 
simple matrix operations. In practical implementations, the soft thresholding ( )rD ⋅  can apply 
to sparse vectors which saves much memory space and accelerates processing time. 

It can be verified that ( )X k  finally converges to the unique solution of the following 
problem [22] 
 

21min || || || ||
2 FX

X Xτ ∗ +  subject to ( ) ( )P X P MΩ Ω=                        (15) 

When r →∞ , Problem (15) converges to Problem (2). Therefore, for large values of τ , 
(12) and (13) iteratively find an X̂  approximating the unique optimal solution to Problem (2). 

4.4 Complete Sampling Algorithm 
Recall the sampling process shown in Fig. 1. At the beginning, the sampling set Ω  is 
initialized by uniformly sampling m  measurements at random and these measurements are 
used to recover the first complete matrix ˆ (0)X . Once the information on every entry is 
obtained, from either the measurement or the recovery, the probability of each entry to be 
sampled for the next round is calculated based on leverage scores of the matrix. The entries are 
then sequenced according to their probability in a descending order and the first C  entries are 
picked up to be measured. Based on the new sampling set ′Ω  with m C+  samples, we get 
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the second recovered complete matrix ˆ (1)X . This sampling procedure keeps running until the 

stopping criterion is reached. Finally, the latest completed matrix ˆ (k)X  is outputted. A 
pseudocode of the whole sampling algorithm is given in Table 2. 

During the procedure, five function blocks (red parts in brackets in Fig. 1) are needed: 
• UniformSampling. For an n n×  matrix, we usually need 2 (0 1)nβ β≤ ≤  measurements 

at start, which can be sampled uniformly at random. These measurements are then used to 
reconstruct the first complete matrix ˆ (0)X  for the sampling procedure to proceed. For a 
practical implementation, we need UniformSampling to provide two kinds of outputs: a 
sampling set Ω  of indexes of matrix entries and a sparse vector corresponding to entry values. 
Compared to the whole 2n  elements, 2nβ  refers to a small fraction. Therefore, it would save 
much more memory space and processing time to operate on a sparse structure than the whole 
matrix. 

• MatrixRecovery. A recovery algorithm is used to solve Problem (2). Every time the 
sampling set Ω  is updated, the recovery algorithm needs to run once. It is better to have the 
output of MatrixRecovery in the form of rank- r  SVD where ˆ ( ) ( ) ( )TX U k k V k= Σ  which is 
convenient for the following step to calculate sample probability. 

• ProbCal. Except for uniform sampling as initialization, we decide which entries to sample 
based on their probability. We calculate the probability based on leverage scores by (9).  

• OmegaUpdate. Once the probability is ready, we rank the corresponding entries in 
descending order and select the first 
 

2

( )
2 (2 ) ijlength P

C nln n
n

g>
=                                                  (16) 

entries with the largest probability. γ  is a probability threshold, e.g., 0.05γ = . The output 
requirement for UniformSampling also applies to OmegaUpdate. 

 
Table 2. The proposed adaptive sampling algorithm 

Input:  Matrix dimension n , initial pair-nodes fraction [0,1]β ∈ , probability threshold γ ; 
1.  0k = ; 
2.  [ , ( )] ( , )k SparseVector k UniformSampling n βΩ = ; 

3.  ˆ ( ) ( , ( ))kX k MatrixRecovery SparseVector k= Ω ; 
4.  while(1) 
5.   1k k= + ; 
6.   1

ˆ( ) ( ( 1),| | )ij kp k ProbCal X k −= − Ω ; 

7.   [ , ( )] ( ( ), )k ijSparseVector k OmegaUpdate p k gΩ = ; 

8.   ˆ ( ) ( , ( ))kX k MatrixRecovery SparseVector k= Ω ; 

9.   if ( )ˆ ˆ( ( 1), ( ))StopCriterion X k X k−  

10.    break; 
11.   end 
12.  end 
Output:   ˆ ( )X k  
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• StopCriterion. The whole sampling procedure completes after the thk  sampling epoch 
when the stopping criterion is reached. This is basically a binary function, indicating that 
whether (10) holds true or not. 

5. Performance Evaluations 

5.1 Methodology 
In simulation process, we adopt Harvard-226 dataset to evaluate the performance of our 
proposed algorithm. The dataset includes application-level RTTs between 226 clients that 
were collected from a peer-to-peer file-sharing application, namely Azureus [24]. The dataset 
used in the evaluation contains 2492546 dynamic and passive RTT measurements with 
timestamps in 4 hours. Among all 50850 ( 2226 226= − , we do not consider diagonal elements 
of the matrix which corresponds to the delay from one node to itself) possible pair-node paths, 
1991 paths were not measured, accounting for 3.9% of the total paths as shown in Fig. 2B. The 
other paths were measured unevenly, from only once to 662 times. It can be seen in Fig. 2B 
that most of the measured paths locate in the range of 40 to 56 times (accounting for 6.0% to 
99%). Medians of the RTTs measured multiple times are therefore used as the true 
measurements for performance evaluation. The RTT distribution of the resulted true 
measurements are shown in Fig. 2C. The maximum RTT is 704ms and over 90% of the all 
paths experience delay less than 320ms. The low-rank characteristic of the true-measurement 
matrix has been analyzed and shown in Fig. 2A. Moreover, to better show the effectiveness of 
our proposed algorithm, we also use the Abilene dataset [33], which contains a time series of 
start-end pairs traffic collected from the Internet2 backbone network based on  a 5-minute 
sample period. Abilene dataset includes 24 weeks of traffic records, and weekly data is 
represented as a 121 × 2016 (7 × 24 × 12 = 2016) traffic matrix. We consider the traffic 
matrices for the first two weeks. 

We compare the proposed sampling algorithm with uniform sampling, the 
information-based sampling proposed in [13] and Stochastic Proximal Gradient 
Descent-based (SPGD) in [32]. In ref. (13), a continuous and information-based adaptive 
sampling scheme is proposed. In the proposed scheme, measurements are carried out regularly. 
In each period, only a subset of end-to-end paths are measured, and the measurement data 
based on matrix completion can obtain the complete path information of the entire network. It 
should be noted that the proposed adaptive sampling strategy is based only on the information 
of the measurements results, which is closely related to the method proposed in this paper. In 
[32], to deal with large-scale network problems, the authors propose a scalable and 
memory-efficient sampling algorithm using stochastic proximal gradient descent (SPGD) 
method. The codes of sampling algorithms are conducted on MATLAB R2017a, with an Intel 
Xeon E5-2680 v4 CPU at 2.40 GHz. 

5.2 Study on Input Parameters 
In Table 2, in addition to the matrix dimension n , there are other two input parameters: the 

initial pair-nodes fraction β  and the probability threshold γ . The former one determines the 
number of initial measurements from uniform sampling while the latter one decides on the 
number of updated measurements to be sampled for each epoch. In this subsection, their 
impact on the algorithm performance is evaluated. 
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Specifically, we perform simulations by combining different choices of β  and γ  
illustrated in Fig. 3, including the median absolute errors (MAEs) and convergence stress (CS). 
The CS is calculated as follows: 
 

2
( , )

2
( , )

ˆ( )
( )

i j ij ij

i j ij

X X
X

∉Ω

∉Ω

Σ −

Σ
                                                    (17) 

 
Here, MAE is used to minimize the effect of outliers and CS is used to assess the 

convergence by measuring the overall fitness. Note that we only measure errors on missing 
entries with index ( , )i j ∉Ω . Among all the missing entries, we also eliminate the diagonal 
elements and those are measured in the dataset. β  is chosen from 2.5% to 30.0% in a step size 
of 2.5% and γ  is from 0.0 to 0.4 with a step size equal to 0.02. Since the gaps between the 
maximum and minimum amplitudes of the metrics are quite large, the range of β  is split into 
two parts: 2.5% to 15.0% in the 1st  row and 17.5% to 30.0% in the 2nd  row in Fig. 3. 
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Fig. 3. Evaluation on input parameters β  and γ : (A) median absolute error; (B) convergence stress 

and (C) final number of samples required to complete (The 1st  row corresponds to β  of 2.5% to 

15.0% while the 2nd  row refer to β  of 17.5% to 30%, both in a step size of 2.5%). 
 

As shown in Fig. 3A, under a specific γ , the median absolute error decreases with the 
increasing of β . A similar pattern can be seen for the convergence stress (Fig. 3B). This is 
because that a larger number of initial measurements also lead to more final measurements 
(Fig. 3C). By sampling more times, we obtain more information about the unknown matrix 
and therefore the matrix can be better recovered. The balance between the measurement cost 
and tolerable error is the core content of our works. 
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From Fig. 3, we can observe that for a fixed specific β , increasing γ  causes the MAE (Fig. 
3A) and the stress (Fig. 3B) to exacerbate, due to the reduced total final samples (Fig. 3C). 
Especially in the 1st  row in Fig. 3 with relatively small β , when γ  increases to a certain 
level, we can clearly see that the MAE, the stress, and the final number of samples are 
constants. 

The reason behind this "saturation" phenomenon is that the number of entries which fulfill 
the requirement in updating rule (15) decreases with the increasing of γ . It can be seen in Fig. 
4 that the number of epoch for the sampling procedure to complete finally converges to 2. This 
can be further analyzed by Fig. 5 where the additional number of samples to uniform sampling 
is 0, when the epoch number converges. This means that with an increasing threshold on 
sampling probability, we are shorter of suitable candidates to select, leading the sampling 
procedure to stop at early stage (i.e., directly after initial uniform sampling). Nevertheless, 
increasing β  will delay the occurrence of the saturation. From both Fig. 4 and Fig. 5, it is 
observed that the value of γ  corresponding to the convergence value becomes larger with the 
increasing of β  (e.g., γ =0.08, 0.10, 0.14, 0.20, 0.26, 0.32 for β = 2.5%, 5.0%, 7.5%, 
10.0%)，12.5%, 15.0% respectively). For the 2nd  row in Fig. 3C, we can see the trend for the 
number of final samples to converge at a certain γ > 0.4. 
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Fig. 4. Number of epoch for the proposed sampling algorithm to complete. 

 
 

Therefore, we can summarize the input parameters in this subsection: 
•  Under a specific probability threshold γ , increasing initial pair-nodes fraction β  

improves the performance (smaller error and less convergence pressure) but at a higher 
measurement cost (higher number of final samples). 
•  With a fixed β , increasing γ  exacerbates the performance (larger error and more 

convergence stress) but at a lower measurement cost (lower number of final samples). The 
performance saturates until a γ  which makes length ( ) 0ijP γ> =  is reached. 
• Increasing β  delays the occurrence of the saturation phenomenon with larger value of γ . 
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Fig. 5. Number of remained samples obtained by final samples subtracting initial uniformly sampled 

ones. 

5.3 Comparison with Other Sampling Algorithms 
In this subsection, we compare our proposed adaptive sampling algorithm with other methods: 
a traditional static uniform sampling, an adaptive information-based sampling devised in [13] 
and Stochastic Proximal Gradient Descent-based (SPGD) in [32]. Based on the analysis in 
Section 5.2, in order to balance between sampling performance and measurement cost, we 
choose β  = 17.5% and γ  = 0.05. 
 

Table 3. Absolute error of different sampling algorithm (CDF=80%) on Harvard-226. 
Algorithm Absolute error (ms) 

1st  epoch (uniform) ≤  19.57 

2nd  epoch (uniform) ≤  17.01 
Info-based sampling ≤  15.58 

Static uniform sampling ≤  12.71 
SPGD ≤  13.59 

Proposed adaptive sampling ≤  12.05 
 

Table 4. Absolute error of different sampling algorithm (CDF=80%) on Abilene. 
Algorithm Absolute error (ms) 

1st  epoch (uniform) ≤  16.69 

2nd  epoch (uniform) ≤  15.58 
Info-based sampling ≤  13.26 

Static uniform sampling ≤  14.59 
SPGD ≤  12.86 

Proposed adaptive sampling ≤  11.16 
 
The absolute error of different sampling algorithm (CDF=80%) on Harvard-226 and Abilene 
is shown in Table 3 and Table 4 respectively. For example, on Harvard-226, the absolute 
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error of 1st  epoch is less than 19.57ms, and the value of the same metric for the proposed 
sampling algorithm is reduced to only 12.05ms (See Table 3), which is also the best among all 
the algorithms. The info-based sampling [13] relies on the distance between ˆ ( )X k  and 
ˆ ( 1)X k −  to sample entries for the next epoch. Therefore, this algorithm needs two rounds of 

uniform sampling at the initialization stage. For a fair comparison, the results on the 1st  epoch 
of sampling are used for the info-based, SPGD and the proposed algorithms as initial data. 
Moreover, the info-based algorithm needs an additional initialization of the 2nd  epoch 
uniform sampling. The info-based sampling also improves its uniform initialization. The static 
uniform sampling is a one-epoch work, and the number of samples is the same as the proposed 
algorithm. Due to the lack of guidance on the number of samples, this algorithm is useless in 
practical applications. We use it to compare with our algorithm. As illustrated in Table 3 and 
Table 4, the performance of the proposed algorithm is better than the information-based 
sampling and similar to the static uniform sampling. 
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Fig. 6. Performance comparison on different sampling algorithms on Harvard-226. The proposed 

algorithm improves the baseline on error ratio, stress, number of sample, and processing time by 16.9%, 
28.9%, 3.9%, 78.6% respectively (regardless of the processing time of static uniform sampling) on 

Harvard-226. 

Moreover, these sampling algorithms can be further estimated based on error ratio, stress, 
number of sample, and processing time on Harvard-226 and Abilene in Fig. 6 and Fig. 7 
respectively. We take normalized mean absolute error (NMAE) as the error ratio, and it is 
calculated as follows: 
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                                                     (18) 

 

The stress is the same one as used in Section 5.2. The number of samples refers to the final 
number of samples that the sampling algorithm requires to complete. The processing time is 
the time that the sampling algorithm takes from the initialization to reaching the stopping 
condition. Because uniform sampling is static one-epoch work, we do not consider its 
processing time. The last two metrics are used to evaluate the measurement cost and are very 
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important for practical applications such as network delay measurement. The 
information-based sampling is used as the baseline and values in parentheses (Table 5 and 
Table 6) represent the percentage of improvement. 
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Fig. 7. Performance comparison on different sampling algorithms on Abilene. The proposed algorithm 
improves the baseline on error ratio, stress, number of sample, and processing time by 17.2%, 33.0%, 
2.2%, 76.7% respectively (regardless of the processing time of static uniform sampling) on Abilene. 

 
On Table 5 and Table 6, we can observe that our proposed method achieves superior 

performance on error ratio, stress, number of sample, and processing time. For example, on 
Harvard-226, we can find that the proposed sampling algorithm improves the baseline on the 
error by 16.9%, similar to the uniform sampling (16.0%). For the stress, the proposed method 
improves the baseline by 28.9%. It is superior to the uniform one that “only” increases by 
11.6%. This means that the proposed sampling algorithm is more suitable for real overall 
measurements than the other two algorithms. Compared with the information-based method 
and SPGD, the most important advantage of the proposed method is that it provides better 
performance (i.e., less error and less convergence pressure,) but with fewer samples (improves 
by 3.9%) in less processing time(improves by 78.6%). 

The most important advantage of the proposed one over the information-based method and 
SPGD is that it provides better performance (i.e., smaller error and less convergence stress) 
but with fewer samples (improves by 3.9%) in shorter processing time (improves by 78.6%). 
The reason is that the distance between ˆ ( 1)X k −  and ˆ ( )X k , which the info-based sampling 
and SPGD adopt as the criterion for selecting samples, limits the choices of suitable sampling 
candidates, making it difficult for the info-based sampling and SPGD to fulfill a rigorous 
requirement by the stopping criterion in (10) (e.g., 310ε −= ).  

 
Table 5. Specific values of metrics in Fig. 6 on Harvard-226. 

Algorithm Information-based Static uniform SPGD Proposed 
Error ratio 0.0664 0.0558(16.0%) 0.0554(16.0%) 0.0552(16.9%) 

Stress 0.0955 0.0844(11.6%) 0.0793(17.0%) 0.0679(28.9%) 
Sample number 12284 11809(3.9%) 11809(3.9%) 11809(3.9%) 
Processing time 1702s - 414s(75.7%) 364s(78.6%) 
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Table 6. Specific values of metrics in Fig. 7 on Abilene. 
Algorithm Information-based Static uniform SPGD Proposed 
Error ratio 0.0593 0.0532(10.2%) 0.529(10.8%) 0.0491 (17.2%) 

Stress 0.0912 0.0801(12.2%) 0.0771(15.5%) 0.0611(33.0%) 
Sample number 15762 12469(2.1%) 12349(2.2%) 12334(2.2%) 
Processing time 2132s - 551(74.2%) 496s(76.7%) 

6. Conclusion and Future Work 
In this paper, we propose an online adaptive sampling algorithm to measure network delay 
based on matrix completion. The proposed algorithm uses statistical leverage scores to sample 
potential elements to obtain better matrix estimation from limited measurements and uses a 
stopping condition to reduce the measurement cost. The most important advantage of the 
proposed algorithm is to fill in the gap between the theoretical bound and the practical 
implementation on the amount of samples needed to successfully restore a matrix. In addition, 
the proposed algorithm has flexibility in choosing a specific restoration algorithm for matrix 
completion. Simulation results based on a real-world network delay matrix indicate that the 
proposed algorithm can provide better performance (smaller error and less convergence 
pressure) at a lower cost (fewer samples and shorter processing time) than the compared 
algorithms. 
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