• Title/Summary/Keyword: ARIMA algorithm

Search Result 41, Processing Time 0.029 seconds

Non-stationary VBR 트래픽을 위한 동적 데이타 크기 예측 알고리즘 (On-line Prediction Algorithm for Non-stationary VBR Traffic)

  • 강성주;원유집;성병찬
    • 한국정보과학회논문지:정보통신
    • /
    • 제34권3호
    • /
    • pp.156-167
    • /
    • 2007
  • 본 논문에서는 VBR(Variable-Bit-Rate) 트래픽의 비선형적이고 버스티한 특성을 모델화 한 GOP ARIMA(ARIMA for Group Of Pictures) 모델을 칼만 필터 알고리즘을 이용하여 실시간으로 예측하는 기법을 제안한다. 칼만 필터를 이용한 예측 기법은 GOP ARIMA의 상태공간 모델링 과정과 향후 N초 간의 트래픽을 예측하는 과정으로 구성된다. 실험을 위해 GOP의 크기가 각각 15인 세 가지 종류의 MPEG VBR 트래픽(뉴스, 드라마, 스포츠)을 제작하였고, 칼만 필터를 이용한 세 가지 종류의 트래픽의 예측 결과를 선형 예측법과 이중 지수 평활법을 이용해 예측한 결과와 비교해 예측 성능이 상대적으로 우수함을 확인할 수 있었다. 또한 예측값에 신뢰 구간을 설정하는 신뢰 구간 분석법을 통해 트래픽 관점에서 장면 변화를 예측하는 방법을 제시하였다. 본 논문의 칼만 필터 기반의 예측 알고리즘은 MPEG 기반 VBR 트래픽을 비롯한 기타 인터넷 트래픽을 실시간으로 예측하는 방법과 이를 이용해 인터넷 서버의 설계 및 자원 할당 정책 등을 위한 트래픽 엔지니어링 연구에 기여할 수 있을 것이다.

계수형 시계열 모형을 위한 자동화 차수 선택 알고리즘 (Automatic order selection procedure for count time series models)

  • 지윤미;성병찬
    • 응용통계연구
    • /
    • 제33권2호
    • /
    • pp.147-160
    • /
    • 2020
  • 본 논문은 시계열 일반화 선형 모형의 하나인 계수형 시계열 모형에서 중요한 역할을 하는 과거 관측값과 조건부 평균값의 차수를 자동으로 결정하는 알고리즘을 연구한다. 본 알고리즘은 ARIMA 모형의 차수를 기반으로 시계열 일반화 선형 모형의 차수 후보군을 만들고, 차수 후보군의 조합을 이용하여 정보량 기준으로 최종 모형으로 선택한다. 제안된 알고리즘을 평가하기 위하여, 내재적 모형 및 내재적 시계열의 종류에 따른 시뮬레이션 및 실증 분석을 수행하고 예측력을 ARIMA 모형과 비교한다. 예측 성능 평가 결과, 계수형 시계열 분석에서 ARIMA 모형에 비해 시계열 일반화 선형 모형의 예측 성능이 우수함을 확인할 수 있다. 또한 실증분석으로서, 살인사건 발생 건수의 예측결과 ARIMA 모형보다 중기 및 장기 예측에서 우수한 성능을 나타내는 것을 확인할 수 있다.

MPEG VBR 트래픽을 위한 GOP ARIMA 기반 대역폭 예측기법 (GOP ARIMA based Bandwidth Prediction for Non-stationary VBR Traffic)

  • 강성주;원유집
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.301-303
    • /
    • 2004
  • In this work, we develop on-line traffic prediction algorithm for real-time VBR traffic. There are a number of important issues: (i) The traffic prediction algorithm should exploit the stochastic characteristics of the underlying traffic and (ii) it should quickly adapt to structural changes in underlying traffic. GOP ARIMA model effectively addresses this issues and it is used as basis in our bandwidth prediction. Our prediction model deploy Kalman filter to incorporate the prediction error for the next prediction round. We examine the performance of GOP ARIMA based prediction with linear prediction with LMS and double exponential smoothing. The proposed prediction algorithm exhibits superior performam againt the rest.

  • PDF

ARIMA 수요자정을 고려한 장기보충계약 (A Long-term Replenishment Contract for the ARIMA Demand Process)

  • 김종수;정봉룡
    • 한국산업경영시스템학회:학술대회논문집
    • /
    • 한국산업경영시스템학회 2002년도 춘계학술대회
    • /
    • pp.343-348
    • /
    • 2002
  • We are concerned with a long-term replenishment contract for the ARIMA demand process in a supply chain. The chain is composed of one supplier, one buyer and consumers for a product. The replenishment contract is based upon the well-known (s, Q) policy but allows us to contract future replenishments at a time with a price discount. Due to the larger forecast error of future demand, the buyer should keep a higher level of safety stock to provide the same level of service as the usual (s, Q) policy. However, the buyer can reduce his purchase cost by ordering a larger quantity at a discounted price. Hence, there exists a trade-off between the price discount and the inventory holding cost. For the ARIMA demand process, we present a model for the contract and an algorithm to find the number of the future replenishments. Numerical experiments show that the proposed algorithm is efficient and accurate.

  • PDF

ARIMA모델 기반 생활 기상지수를 이용한 동·하계 최대 전력 수요 예측 알고리즘 개발 (Development of ARIMA-based Forecasting Algorithms using Meteorological Indices for Seasonal Peak Load)

  • 정현철;정재성;강병오
    • 전기학회논문지
    • /
    • 제67권10호
    • /
    • pp.1257-1264
    • /
    • 2018
  • This paper proposes Autoregressive Integrated Moving Average (ARIMA)-based forecasting algorithms using meteorological indices to predict seasonal peak load. First of all, this paper observes a seasonal pattern of the peak load that appears intensively in winter and summer, and generates ARIMA models to predict the peak load of summer and winter. In addition, this paper also proposes hybrid ARIMA-based models (ARIMA-Hybrid) using a discomfort index and a sensible temperature to enhance the conventional ARIMA model. To verify the proposed algorithm, both ARIMA and ARIMA-Hybrid models are developed based on peak load data obtained from 2006 to 2015 and their forecasting results are compared by using the peak load in 2016. The simulation result indicates that the proposed ARIMA-Hybrid models shows the relatively improved performance than the conventional ARIMA model.

ARIMA 모델을 이용한 설로 이용률의 임계값 위반 예측 기법 (Prediction Algorithm of Threshold Violation in Line Utilization using ARIMA model)

  • 조강흥;조강홍;안성진;안성진;정진욱
    • 한국통신학회논문지
    • /
    • 제25권8A호
    • /
    • pp.1153-1159
    • /
    • 2000
  • 이 논문에서는 네트워크의 QoS에 가장큰 영향을 미치는 네트워크 선로 이용률의 과거데이터를 기반으로 단기간 예측과 계절성(seasonality) 예측에 적합한 계절자기회귀이동평균(SARIMA: seasonal ARIMA) 모형을 적용하여 앞으로의 시간대별 선로 이용률을 예측하고 그 신뢰 구간을 추정함으로써 확류에 근거한 선로 이용률의 임계값 위반 시점을 예측할 수 있으며 확률에 근거한 신뢰성을 제공할 수 있다 또한 제시한 모델의 적합성 여부를 평가하였으며 실험을 통하여 적절한 수준의 임계값과 임계값 탐지의 기준이 되는 탐지 확률값을 추론함으로써 본 알고리즘의 성능을 최대화하였다.

  • PDF

ARIMA를 활용한 실시간 SCR-HP 밸브 온도 수집 및 고장 예측 (Real-time SCR-HP(Selective catalytic reduction - high pressure) valve temperature collection and failure prediction using ARIMA)

  • 이수환;홍현지;박지수;염은섭
    • 한국가시화정보학회지
    • /
    • 제19권1호
    • /
    • pp.62-67
    • /
    • 2021
  • Selective catalytic reduction(SCR) is an exhaust gas reduction device to remove nitro oxides (NOx). SCR operation of ship can be controlled through valves for minimizing economic loss from SCR. Valve in SCR-high pressure (HP) system is directly connected to engine exhaust and operates in high temperature and high pressure. Long-term thermal deformation induced by engine heat weakens the sealing of the valve, which can lead to unexpected failures during ship sailing. In order to prevent the unexpected failures due to long-term valve thermal deformation, a failure prediction system using autoregressive integrated moving average (ARIMA) was proposed. Based on the heating experiment, virtual data mimicking temperature range around the SCR-HP valve were produced. By detecting abnormal temperature rise and fall based on the short-term ARIMA prediction, an algorithm determines whether present temperature data is required for failure prediction. The signal processed by the data collection algorithm was interpolated for the failure prediction. By comparing mean average error (MAE) and root mean square error (RMSE), ARIMA model and suitable prediction instant were determined.

항만물동량 예측력 제고를 위한 ARIMA 및 인공신경망모형들의 비교 연구 (A Study on Application of ARIMA and Neural Networks for Time Series Forecasting of Port Traffic)

  • 신창훈;정수현
    • 한국항해항만학회지
    • /
    • 제35권1호
    • /
    • pp.83-91
    • /
    • 2011
  • 예측의 정확성은 비용의 감소나 고객서비스의 제고를 위해 필수적으로 선행되어야 하기에 현재까지도 많은 연구자들에 의해 연구되고 있는 분야이다. 본 연구에서는 국내 항만의 컨테이너 물동량 예측에 있어 대표적인 비선형예측모형인 인공신경망모형과 ARIMA모형에 대한 비교연구를 수행하는데 목적을 두었고, 컨테이너 물동량 예측력 제고를 위해 ARIMA모형과 인공신경망(ANN)모형을 결합한 하이브리드모형을 사용해 다른 모형들과 예측성과를 비교하고자 한다. 특히 인공신경망모형의 네트워크 구조 설계에 부분에 있어 방대하며 복잡한 탐색공간에서도 전역해 찾기에 효과적인 기법으로 알려져 있는 유전알고리즘을 사용함과 동시에 인공신경망의 대표적인 모형으로 알려진 다층 퍼셉트론(MLP)뿐만 아니라 시간지연네트워크(TDNN)를 사용해 예측성과를 비교하였다. 그 결과 ANN모형과 하이브리드모형이 ARIMA모형보다 더 뛰어난 예측성과를 보이는 것으로 나왔다.

ARIMA 모형과 인공신경망모형의 BOD예측력 비교 (Comparison of the BOD Forecasting Ability of the ARIMA model and the Artificial Neural Network Model)

  • 정효준;이홍근
    • 한국환경보건학회지
    • /
    • 제28권3호
    • /
    • pp.19-25
    • /
    • 2002
  • In this paper, the water quality forecast was performed on the BOD of the Chungju Dam using the ARIMA model, which is a nonlinear statistics model, and the artificial neural network model. The monthly data of water quality were collected from 1991 to 2000. The most appropriate ARIMA model for Chungju dam was found to be the multiplicative seasonal ARIMA(1,0,1)(1,0,1)$_{12}$, model. While the artificial neural network model, which is used relatively often in recent days, forecasts new data by the strength of a learned matrix like human neurons. The BOD values were forecasted using the back-propagation algorithm of multi-layer perceptrons in this paper. Artificial neural network model was com- posed of two hidden layers and the node number of each hidden layer was designed fifteen. It was demonstrated that the ARIMA model was more appropriate in terms of changes around the overall average, but the artificial neural net-work model was more appropriate in terms of reflecting the minimum and the maximum values.s.

ARIMA 모델 기반의 리튬이온 배터리 SOH 예측 알고리즘 (Prediction Algorithm for Lithium Ion Battery SOH Based on ARIMA Model)

  • 김승우;박진형;김종훈
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2019년도 전력전자학술대회
    • /
    • pp.56-58
    • /
    • 2019
  • 배터리의 효율적인 관리와 안정적인 운영을 위해서는 배터리의 노화에 따른 배터리의 모니터링이 필요하다. 하지만 모델 기반의 SOH 예측 모델의 경우 파라미터의 변화에 대한 정확한 정보가 반영되지 않을 경우 심각한 오류를 야기 할 수 있다. 따라서 본 논문에서는 비 모델인 시계열 예측 기법 ARIMA 모델을 제안하고 전기적 특성 실험을 통한 내부 파라미터에 대한 분석과 파라미터에 대한 상관분석, 이를 통한 SOH 예측을 통해 ARIMA 모델의 특성 및 정확성에 대해 제안한다.

  • PDF