• 제목/요약/키워드: ARIMA Models

검색결과 188건 처리시간 0.022초

Application of Informer for time-series NO2 prediction

  • Hye Yeon Sin;Minchul Kang;Joonsung Kang
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권7호
    • /
    • pp.11-18
    • /
    • 2023
  • 본 논문에서는 딥러닝 시계열 예측 모형을 평가한다. 최근 연구에 따르면 이 모형은 ARIMA와 같은 기존 예측 모형보다 성능이 우수하다고 결론짓는다. 그 중 히든 레이어에 이전 정보를 저장하는 순환 신경망이 이를 위한 예측 모형 중 하나이다. 네트워크의 그래디언트 소실 문제를 해결하기 위해 LSTM은 데이터 흐름의 반대 방향으로 숨겨진 레이어가 추가되는 BI-LSTM과 함께 순환 신경망 내부의 작은 메모리로 사용된다. 본 논문은 서울의 2018년 1월 1일부터 2022년도 1월 1일까지의 NO2 자료에 대해 Informer의 성능을 LSTM, BI-LSTM, Transformer와 비교하였다. 이에 실제 값과 예측값 사이의 평균 제곱근 오차와 평균 절대 오차를 구하였다. 그 결과 Test 데이터(2021.09.01.~2022.01.01.)에 대해 Informer는 다른 방법에 비해 가장 높은 예측 정확도 (가장 낮은 예측 오차: 평균 제곱근 오차: 0.0167, 평균 절대 오차: 0.0138)를 보여 타 방법에 비해 그 우수성을 입증하였다. Informer는 당초 취지와 부합되게 다른 방법들이 갖고 있는 장기 시계열 예측에 있어서의 문제점을 개선하는 결과를 나타내고 있다.

농업용 저수지에서 저수량 예측 모형과 연계한 저수지 운영 개선 방안의 모색 (A Reservoir Operation Plan Coupled with Storage Forecasting Models in Existing Agricultural Reservoir)

  • 안태진;이훈자;이재영;이재응;윤용남
    • 한국수자원학회논문집
    • /
    • 제37권1호
    • /
    • pp.77-86
    • /
    • 2004
  • 본 연구에서는 농업용 저수지에서 저수량 예측모형과 함께 저수지의 목표저수량 및 한계저수량을 유지하기 위한 저수지 운영방안을 제시하였다. 대상저수지인 금강저수지에서 1990년부터 200l년까지의 저수량 자료를 이용하여 갈수빈도해석을 적용하고, 2년빈도 한발저수량을 목표저수량(target storage)으로, 10년빈도 한발저수량을 한계저수량(critical storage)으로 설정하였다. 농업용 저수지의 운영의 효율화를 위해서는 우선 합리적인 방법을 통하여 장래 저수량을 예측하여야 한다. 예측된 저수량은 저수지 운영에 관한 계획을 수립하는데 기초자료로 활용될 수 있다. 본 연구에는 저수량 예측모형으로 ARIMA 모형과 자기회귀오차모형을 적용하였다. ARIMA 모형은 과거 저수량 자료만을 근거로 하여 저수량을 예측함으로서 예측정도가 상대적으로 낮은 것으로 나타난 반면, 자기회귀오차모형은 저수량과 관련 있는 설명변수들을 이용함으로써 예측의 효과를 높일 수 있었다. 농업용 저수지의 저수량은 이전 저수량, 강수량, 평균온도, 최고온도, 관개면적, 풍속, 습도의 영향을 받으므로 자기회귀오차모형을 적용하여 저수량과 저수량에 영향을 미치는 요인과의 관계를 분석하였다. 자기회귀오차모형에 의한 저수량 예측 관계식은 저수지의 연속방정식과 유사한 관계식으로 유도되어 실제 적용성이 높을 것으로 판단되며, 금광저수지에서 예측된 2002년도 저수량과 관측된 저수량을 비교한 결과, 양호한 예측결과를 보여 주었다.

항만인센티브제도의 효과에 대한 정량적 분석: 부산항을 중심으로 (Quantitative Analysis of Port Incentive Effect: Focusing on Busan Port)

  • 하명신;김철민;장병기
    • 한국항만경제학회지
    • /
    • 제27권2호
    • /
    • pp.355-372
    • /
    • 2011
  • 동북아 물류중심지가 되겠다는 목표 하에 환적화물유치 증대를 위한 다양한 인센티브 제도를 실시하고 있다. 그러나 인센티브제도의 실질적인 효과에 대한 검증 없이 경쟁적으로 인센티브만 증가시키고 있다는 우려가 제기되고 있다. 터미널간 요율경쟁에 추가하여 지나친 인센티브경쟁으로 인해 가뜩이나 낮은 생산성을 가진 국내항만이 오히려 경쟁력 저하를 가져오지 않을까 우려되기도 한다. 따라서 본 연구는 부산항이 환적화물 유치증대를 위해 2004년부터 실시해온 볼륨인센티브제도가 과연 부산항의 환적화물 증대에 기여해 왔는지 분석하였다. 이를 위하여 기존의 연구들과 달리 각종 계량분석기법들을 적용하여 정량화된 분석을 시도하였다. ARIMA 타입의 모형과 공적분분석에 의한 장기균형모형을 구축한 후 모형의 예측치와 실제치를 비교함으로서 인센티브제도가 환적물량의 증대를 가져왔는지 검정하였다. 또한 인센티브제도의 도입이 모형의 구조변화를 가져왔는지 검정함으로서 인센티브효과에 대한 유의성을 확인하였다. ARIMA 타입의 모형들을 이용한 분석결과에 의하면 제도시행 7년간 총 100만 TEU 내외의 물량증가가 발생한 것으로 추정되었다. 한편 장기균형식을 이용한 분석결과에 의하면 7년간의 환적물량 증가효과가 총 50만 TEU미만인 것으로 나타났다. 한편 인센티브제도 도입으로 인한 구조변화를 검정한 결과 ARIMA모형과 장기균형식 모두에서 인센티브 더미변수가 유의하지 않은 것으로 나타났다. 즉, 인센티브제도의 도입이 부산항의 환적물량모형의 변화를 가져오지 못한 것으로 나타났다. 분석결과들을 종합해보면 다소 환적물량의 증가효과는 있었던 것으로 추정되나 모형의 변화를 유발할 만큼의 유의한 변화는 가져오지 못한 것으로 판단된다. 특히 부산항만공사의 막대한 투입비용을 고려할 때 그 성과는 불충분한 것으로 판단된다.

단기 통행시간예측 모형 개발에 관한 연구 (The study of Estimation model for the short-term travel time prediction)

  • 이승재;김범일;권혁
    • 한국ITS학회 논문지
    • /
    • 제3권1호
    • /
    • pp.31-44
    • /
    • 2004
  • 최근 몇 년간 도시교통문제의 해결책으로 부각되어온 지능형교통체계(ITS : Intelligent Transport System)의 한 분야로 첨단여행자 정보체계(ATIS : Advanced Travellers Information System)는 자동차에 장착된 항법장치(CNS)를 통해 운전자에게 원하는 목적지까지 최적경로를 제공하거나 경로에 대한 통행시간 정보를 제공 또는 예측해 주는 시스템이다. 본 연구에서는 이러한 최적경로 제공이나 통행시간 예측에 있어 좀 더 효율적인 통행시간 예측모형을 개발하고자 하였다. 현재까지의 통행시간 예측은 운전자가 통행을 시작할 때의 교통상황에 대한 정보이기 때문에 운전 중에 달라지는 교통상황을 반영할 수 없어 이로 인해 운전자가 경험하는 통행시간과 큰 차이를 발생시킬 수 있다. 본 연구에서는 이러한 불합리적인 예측시스템을 개선시킬 수 있는 예측된(predicted) 통행시간 예측 모형을 개발하고자 하였다. 이를 위해 우선 통행시간 예측모형을 특정링크에 적용시켜 모형들의 예측치와 실제 통행시간을 비교하여 교통량 흐름 패턴에 따라 어느 모형이 적합한지, 또 예측시간이 달라짐에 따라 모형들의 적합도와 첨두와 비첨두시 예측시간 간격에 따라 예측치와 실측치의 오차율을 알아보았다, 이를 통해 선정된 확률과정 모형과 칼만 필터링 예측모형을 서울시의 4개축에 대해서 다시 적용해 보았다. 그 결과 단기통행시간 예측에 있어서는 칼만필터링모형이, 장기 통행시간 예측에 있어서는 확률과정 모형이 통행시간 예측에 있어 우수한 모형임을 밝혀냈다. 마지막으로 서울시 28개 교통축의 5분 후 통행시간 예측에 칼만필터링 모형을 이용하여 오차분석을 적용하여 보았다. 그 결과 칼만필터링 모형이 신뢰할 만한 오차율을 보였다.

  • PDF

딥러닝 기법을 활용한 컨테이너선 운임 예측 모델 (Estimation Model for Freight of Container Ships using Deep Learning Method)

  • 김동균;최정석
    • 해양환경안전학회지
    • /
    • 제27권5호
    • /
    • pp.574-583
    • /
    • 2021
  • 해운 시황을 예측하는 것은 중요한 문제이다. 투자 방식의 결정, 선대 편성 방법, 운임 등을 결정하기 위한 판단 근거가 되며 이는 기업의 이익과 생존에 큰 영향을 미치기 때문이다. 이를 위해 본 연구에서는 기계학습 모델인 장단기 메모리 및 간소화된 장단기 메모리 구조의 Gated Recurrent Units를 활용하여 컨테이너선의 해상운임 예측 모델을 제안한다. 운임 예측 대상은 중국 컨테이너 운임지수(CCFI)이며, 2003년 3월부터 2020년 5월까지의 CCFI 데이터를 학습에 사용하였다. 각 모델에 따라 2020년 6월 이후의 CCFI를 예측한 후 실제 CCFI와 비교, 분석하였다. 실험 모델은 하이퍼 파라메터의 설정에 따라 총 6개의 모델을 설계하였다. 또한 전통적인 분석 방법과의 성능을 비교하기 위해 ARIMA 모델도 실험에 추가하였다. 최적 모델은 두 가지 방법에 따라 선정하였다. 첫 번째 방법으로 각 모델을 10회 반복 실험하여 얻은 RMSE의 평균값이 가장 작은 모델을 선정하는 것이다. 두 번째 방법으로는 모든 실험에서 가장 낮은 RMSE를 기록한 모델을 선정하는 것이다. 실험 결과 전통적 시계열 예측모델인 ARIMA 모델과 비교하여 딥러닝 모델의 정확도를 입증하였으며, 정확한 예측모델을 통해 운임 변동의 위험관리 능력을 제고시키는데 기여했다. 반면 코로나19와 같은 외부 효과에 따른 운임의 급격한 변화상황이 발생한 경우, 예측모델의 정확도가 감소하는 한계점을 나타냈다. 제안된 모델 중 GRU1 모델이 두 가지 평가 방법 모두에서 가장 낮은 RMSE(69.55, 49.35)를 기록하며 최적 모델로 선정되었다.

주택가격지수 예측모형에 관한 비교연구 (A study on the forecasting models using housing price index)

  • 임성식
    • Journal of the Korean Data and Information Science Society
    • /
    • 제25권1호
    • /
    • pp.65-76
    • /
    • 2014
  • 주택가격은 정부의 부동산 정책이나 국내외의 경기상황과 같은 외부충격요인에 따라 많은 영향을 받는다. 본 연구에서는 주택가격지수 예측을 위한 모형구축에서 중요한 요인은 외부충격요인으로 이를 개입효과라 하며, 이 외부요인들이 주택가격지수에 미치는 영향을 파악하고 향후 주택가격지수를 효율적으로 예측하기 위한 시계열모형을 찾는데 있다. 실제 자료를 이용하여 분석한 예측결과 개입모형이 다른 모형에 비해 우수한 것으로 나타났다.

Transfer Function 모형을 이용한 수도물 수요의 단기예측 (A Short-term Forecasting of Water Supply Demands by the Transfer Function Model)

  • 이재준
    • 상하수도학회지
    • /
    • 제10권2호
    • /
    • pp.88-103
    • /
    • 1996
  • The objective of this study is to develop stochastic and deterministic models which could be used to synthesize water application time series. Adaptive models using mulitivariate ARIMA(Transfer Function Model) are developed for daily urban water use forecasting. The model considers several variables on which water demands is dependent. The dynamic response of water demands to several factors(e.g. weekday, average temperature, minimum temperature, maximum temperature, humidity, cloudiness, rainfall) are characterized in the model by transfer functions. Daily water use data of Kumi city in 1992 are employed for model parameter estimation. Meteorological data of Seonsan station are utilized to input variables because Kumi has no records about the meteorological factor data.To determine the main factors influencing water use, autocorrelogram and cross correlogram analysis are performed. Through the identification, parameter estimation, and diagnostic checking of tentative model, final transfer function models by each month are established. The simulation output by transfer function models are compared to a historical data and shows the good agreement.

  • PDF

A Time Series-Based Statistical Approach for Trade Turnover Forecasting and Assessing: Evidence from China and Russia

  • DING, Xiao Wei
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제9권4호
    • /
    • pp.83-92
    • /
    • 2022
  • Due to the uncertainty in the order of the integrated model, the SARIMA-LSTM model, SARIMA-SVR model, LSTM-SARIMA model, and SVR-SARIMA model are constructed respectively to determine the best-combined model for forecasting the China-Russia trade turnover. Meanwhile, the effect of the order of the combined models on the prediction results is analyzed. Using indicators such as MAPE and RMSE, we compare and evaluate the predictive effects of different models. The results show that the SARIMA-LSTM model combines the SARIMA model's short-term forecasting advantage with the LSTM model's long-term forecasting advantage, which has the highest forecast accuracy of all models and can accurately predict the trend of China-Russia trade turnover in the post-epidemic period. Furthermore, the SARIMA - LSTM model has a higher forecast accuracy than the LSTM-ARIMA model. Nevertheless, the SARIMA-SVR model's forecast accuracy is lower than the SVR-SARIMA model's. As a result, the combined models' order has no bearing on the predicting outcomes for the China-Russia trade turnover time series.

시계열 분석에 의한 어획량 예측 - 한국 근해산 갈치를 예로 하여 - (Forecasting of Hairtail (Trichiurus lepturus) Landings in Korean Waters by Times Series Analysis)

  • 유신재;장창익
    • 한국수산과학회지
    • /
    • 제26권4호
    • /
    • pp.363-368
    • /
    • 1993
  • 어획량의 단기 예측은 자원관리에 있어 중요한 항목이지만 전통적인 개체군 모델은 수산자원 관리에 있어 실제적으로 요구되는 예측력이 크게 부족하다. 다종 또는 생태계 모델도 요구되는 매개변수의 수가 많아 실제적 적용이 어렵다. 반면에 단변수 시계열 분석법은 시계열 자체에서 변동성에 관한 특성을 추정하여 이를 토대로 장래 변동성을 예측함으로 최소한의 자료를 가지고 비교적 정확한 단기예측이 가능하므로 유용성이 높다. 본 연구에서는 ARIMA 시계열 모델을 $1971{\sim}1988$년 간의 한국근해의 월별 갈치어획량 자료에 적용하였다. 여기서 나온 예측치와 분석에 포함되지 않았던 $1989{\sim}1990$년 간의 어획량과 비교하였다. 분석 결과 예측치와 실제어획량이 잘 일치하였으며(r=0.938) 평균상대오차는 $59.5\%$였다.

  • PDF

A Multi-step Time Series Forecasting Model for Mid-to-Long Term Agricultural Price Prediction

  • Jonghyun, Park;Yeong-Woo, Lim;Do Hyun, Lim;Yunsung, Choi;Hyunchul, Ahn
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권2호
    • /
    • pp.201-207
    • /
    • 2023
  • 본 논문에서는 Multi-Step Time Series의 세 가지 전략을 비교 분석하기 위해 LGBM, MLP, LSTM, GRU를 사용하여 농산물 중장기 가격 예측에 대한 최적의 모형을 제안한다. 제안 모형은 다각도로 전략을 선택하여 모델과 전략간 최적의 조합을 찾도록 설계되었다. 기존 농산물 가격 예측 연구에서는 전통 계량경제 모델인 ARIMA를 비롯하여 LSTM 계열 모델이 주로 사용된 반면 Multi-Step Time Series 관련 농산물 가격 예측 연구는 매우 제한적이다. 본 연구에서는 농산물 가격의 변동성 정도에 따라 두 개의 기간으로 나누어 실험을 진행하였으며, Direct, Hybrid, Multiple Outputs 등 세 전략의 중장기 가격 예측 결과 Hybrid 접근법이 상대적으로 우수한 성능을 보였다.본 연구 결과는 중장기 일별 가격 예측을 고도화할 수 있는 효과적인 대안을 제시한다는 측면에서 학술적, 실무적 의의를 갖는다.