DOI QR코드

DOI QR Code

A study on the forecasting models using housing price index

주택가격지수 예측모형에 관한 비교연구

  • Lim, Seong Sik (Division of General Education, SeoKyeong University)
  • 임성식 (서경대학교 교양과정부)
  • Received : 2013.11.18
  • Accepted : 2013.12.24
  • Published : 2014.01.31

Abstract

Housing prices are influenced by external shock factors such as real estate policy or economy. Thus, the intervention effect is important for the development of forecasting model for housing price index. In this paper, we examined the degree of effective power of external shock factors for forecasting housing price index and analyzed time series models for efficient forecasting of housing price index. It is shown that intervention models are better than other models in forecasting results using real data based on the accuracy criteria.

주택가격은 정부의 부동산 정책이나 국내외의 경기상황과 같은 외부충격요인에 따라 많은 영향을 받는다. 본 연구에서는 주택가격지수 예측을 위한 모형구축에서 중요한 요인은 외부충격요인으로 이를 개입효과라 하며, 이 외부요인들이 주택가격지수에 미치는 영향을 파악하고 향후 주택가격지수를 효율적으로 예측하기 위한 시계열모형을 찾는데 있다. 실제 자료를 이용하여 분석한 예측결과 개입모형이 다른 모형에 비해 우수한 것으로 나타났다.

Keywords

References

  1. Abraham, B. and Ledolter, J. (1983). Statistical methods for forecasting, Wiley, New York.
  2. Bang, K. S. (2011). Real estate terms dictionary, Buyonsa, Seoul.
  3. Box, G. E. P., Jenkins, G. M. and Reinsel, G. C. (1994). Time series analysis forecasting and control, 3rd ed., Prentice-Hall, Inc., New Jersey.
  4. Cho, Y. J. and Kim, Y. H. (2008). Development of forecasting model in tax exemption oil of fisheries using seasonal ARIMA. Journal of the Korean Data & Information Science Society, 19, 1037-1046.
  5. Chun, H. J. (2013). The dynamic correlation between chonsei price, house prices, and house lease price to house sale price ratio. Korea Real Estate Academy Review, 53, 189-200.
  6. Gaynor, P. E. and Kirkpatrick, R. C. (1994). Introduction to time- series modeling and forecasting in business and economics, McGraw-Hill, Inc., New York.
  7. Han, K. S. (2011). The influence of real estate pricing factors on house sales price index in west area of Gangwon-do. Korean Academic Society of Business Administration, 66, 547-565.
  8. Kim, K. Y. (1998). Model identification and test for forecasting house price. The Korea Spatial Planning Review, 197, 54-61.
  9. Lee, H. W. and Lee, H. B. (2009). Comparative analysis for predictability of housing price index by model in Seoul. Korea Real Estate Academy Review, 38, 215-235.
  10. Lee, K. H. and Kim, K. S. (1996).The analysis of influence on land price and land supply by land regulation, Samsung Economic Research Institute, Seoul.
  11. Noh, Y. H. and Kim, G. H. (2012). A study on the impact on real estate policy of housing prices. Korea Real Estate Academy Review, 50, 108-122.
  12. Park, I. C., Kwon, O. J. and Kim, T. Y. (2009). KOSPI directivity forecasting by time series model. Journal of the Korean Data & Information Science Society, 20, 991-998.
  13. Son, J. S., Kim, K. Y. and Kim, Y. S. (2003). A study on the forecasting model of real estate market : The case of Korea. Housing Studies Review, 11, 49-75.
  14. Wei, W. W. S. (1990). Time series analysis, Addison-Wesley, Redwood City, California.
  15. Yoon, J. H. and Kim, H. S. (2000). Short-term forecasting model for the housing market, Korea Research Institute for Human Settlements, Anyang.

Cited by

  1. A study on the violent crime and control factors in Korea vol.27, pp.6, 2016, https://doi.org/10.7465/jkdi.2016.27.6.1511
  2. Study on equity of taxation for non-residential property by analysis of actual transaction price vol.27, pp.3, 2016, https://doi.org/10.7465/jkdi.2016.27.3.639
  3. Cluster analysis for Seoul apartment price using symbolic data vol.26, pp.6, 2015, https://doi.org/10.7465/jkdi.2015.26.6.1239
  4. Comparison of the forecasting models with real estate price index vol.27, pp.6, 2016, https://doi.org/10.7465/jkdi.2016.27.6.1573
  5. 부동산 경매 낙찰가율 시계열의 Chaos 분석 vol.28, pp.2, 2014, https://doi.org/10.7465/jkdi.2017.28.2.371
  6. 우리나라 경제통계 시각화의 현황과 과제 vol.28, pp.6, 2017, https://doi.org/10.7465/jkdi.2017.28.6.1313
  7. 아파트매매가격지수와 거시경제변수에 관한 시계열모형 연구 vol.28, pp.6, 2014, https://doi.org/10.7465/jkdi.2017.28.6.1471
  8. 아파트 매매가격 예측에 관한 연구: 경기도 S시 아파트 기본속성과 경제·교육·문화·교통 속성을 중심으로 vol.5, pp.1, 2014, https://doi.org/10.36498/kbigdt.2020.5.1.109
  9. 기계학습 알고리즘을 활용한 지역 별 아파트 실거래가격지수 예측모델 비교: LIME 해석력 검증 vol.29, pp.3, 2014, https://doi.org/10.5859/kais.2020.29.3.119
  10. 인공신경망을 이용한 주택가격지수 예측 vol.22, pp.4, 2021, https://doi.org/10.5762/kais.2021.22.4.228