• Title/Summary/Keyword: APEC Climate Center

Search Result 125, Processing Time 0.029 seconds

Smart Plant Disease Management Using Agrometeorological Big Data (농업기상 빅데이터를 활용한 스마트 식물병 관리)

  • Kim, Kwang-Hyung;Lee, Junhyuk
    • Research in Plant Disease
    • /
    • v.26 no.3
    • /
    • pp.121-133
    • /
    • 2020
  • Climate change, increased extreme weather and climate events, and rapidly changing socio-economic environment threaten agriculture and thus food security of our society. Therefore, it is urgent to shift from conventional farming to smart agriculture using big data and artificial intelligence to secure sustainable growth. In order to efficiently manage plant diseases through smart agriculture, agricultural big data that can be utilized with various advanced technologies must be secured first. In this review, we will first learn about agrometeorological big data consisted of meteorological, environmental, and agricultural data that the plant pathology communities can contribute for smart plant disease management. We will then present each sequential components of the smart plant disease management, which are prediction, monitoring and diagnosis, control, prevention and risk management of plant diseases. This review will give us an appraisal of where we are at the moment, what has been prepared so far, what is lacking, and how to move forward for the preparation of smart plant disease management.

Evaluating Changes and Uncertainty of Nitrogen Load from Rice Paddy according to the Climate Change Scenario Multi-Model Ensemble (기후변화시나리오 다중모형 앙상블에 따른 논 질소 유출 부하량 변동 및 불확실성 평가)

  • Choi, Soon-Kun;Jeong, Jaehak;Yeob, So-Jin;Kim, Minwook;Kim, Jin Ho;Kim, Min-Kyeong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.5
    • /
    • pp.47-62
    • /
    • 2020
  • Rice paddy accounts for approximately 52.5% of all farmlands in South Korea, and it is closely related to the water environment. Climate change is expected to affect not only agricultural productivity also the water and the nutrient circulation. Therefore this study was aimed to evaluate changes of nitrogen load from rice paddy considering climate change scenario uncertainty. APEX-Paddy model which reflect rice paddy environment by modifying APEX (Agricultural Policy and Environmental eXtender) model was used. Using the AIMS (APCC Integrated Modeling Solution) offered by the APEC Climate Center, bias correction was conducted for 9 GCMs using non-parametric quantile mapping. Bias corrected climate change scenarios were applied to the APEX-Paddy model. The changes and uncertainty in runoff and nitrogen load were evaluated using multi-model ensemble. Paddy runoff showed a change of 23.1% for RCP4.5 scenario and 45.5% for RCP8.5 scenario compared the 2085s (2071 to 2100) against the base period (1976 to 2005). The nitrogen load was found to be increased as 43.9% for RCP4.5 scenario and 76.0% for RCP8.5 scenario. The uncertainty analysis showed that the annual standard deviation of nitrogen loads increased in the future, and the maximum entropy indicated an increasing tendency. And Duncan's analysis showed significant differences among GCMs as the future progressed. The result of this study seems to be used as a basis for mid- and long-term policies for water resources and water system environment considering climate change.

Generation of radar rainfall data for hydrological and meteorological application (I) : bias correction and estimation of error distribution (수문기상학적 활용을 위한 레이더 강우자료 생산(I) : 편의보정 및 오차분포 산정)

  • Kim, Tae-Jeong;Lee, Dong-Ryul;Jang, Sang-Min;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.1
    • /
    • pp.1-15
    • /
    • 2017
  • Information on radar rainfall with high spatio-temporal resolution over large areas has been used to mitigate climate-related disasters such as flash floods. On the other hand, a well-known problem associated with the radar rainfall using the Marshall-Palmer relationship is the underestimation. In this study, we develop a new bias correction scheme based on the quantile regression method. This study employed a bivariate copula function method for the joint simulation between radar and ground gauge rainfall data to better characterize the error distribution. The proposed quantile regression based bias corrected rainfall showed a good agreement with that of observed. Moreover, the results of our case studies suggest that the copula function approach was useful to functionalize the error distribution of radar rainfall in an effective way.

Assessment of Flood Probability Based on Temporal Distribution of Forecasted-Rainfall in Cheongmicheon Watershed (예보강우의 시간분포에 따른 청미천 유역의 홍수 확률 평가)

  • Lee, Hyunji;Jun, Sang Min;Hwang, Soon Ho;Choi, Soon-Kun;Park, Jihoon;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.1
    • /
    • pp.17-27
    • /
    • 2020
  • The objective of this study was to assess the flood probability based on temporal distribution of forecasted-rainfall in Cheongmicheon watershed. In this study, 6-hr rainfalls were disaggregated into hourly rainfall using the Multiplicative Random Cascade (MRC) model, which is a stochastic rainfall time disaggregation model and it was repeated 100 times to make 100 rainfalls for each storm event. The watershed runoff was estimated using the Clark unit hydrograph method with disaggregated rainfall and watershed characteristics. Using the peak discharges of the simulated hydrographs, the probability distribution was determined and parameters were estimated. Using the parameters, the probability density function is shown and the flood probability is calculated by comparing with the design flood of Cheongmicheon watershed. The flood probability results differed for various values of rainfall and rainfall duration. In addition, the flood probability calculated in this study was compared with the actual flood damage in Cheongmicheon watershed (R2 = 0.7). Further, this study results could be used for flood forecasting.

Comparison of Land Surface Temperature Algorithm Using Landsat-8 Data for South Korea

  • Choi, Sungwon;Lee, Kyeong-Sang;Seo, Minji;Seong, Noh-Hun;Jin, Donghyun;Jung, Daeseong;Sim, Suyoung;Jung, Im Gook;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.1
    • /
    • pp.153-160
    • /
    • 2021
  • Land Surface Temperature (LST) is the radiological surface temperature which observed by satellite. It is very important factor to estimate condition of the Earth such as Global warming and Heat island. For these reasons, many countries operate their own satellite to observe the Earth condition. South Korea has many landcovers such as forest, crop land, urban. Therefore, if we want to retrieve accurate LST, we would use high-resolution satellite data. In this study, we made LSTs with 4 LST retrieval algorithms which are used widely with Landsat-8 data which has 30 m spatial resolution. We retrieved LST using equations of Price, Becker et al. Prata, Coll et al. and they showed very similar spatial distribution. We validated 4 LSTs with Moderate resolution Imaging Spectroradiometer (MODIS) LST data to find the most suitable algorithm. As a result, every LST shows 2.160 ~ 3.387 K of RMSE. And LST by Prata algorithm show the lowest RMSE than others. With this validation result, we choose LST by Prata algorithm as the most suitable LST to South Korea.

Hydrological Drought Assessment and Monitoring Based on Remote Sensing for Ungauged Areas (미계측 유역의 수문학적 가뭄 평가 및 감시를 위한 원격탐사의 활용)

  • Rhee, Jinyoung;Im, Jungho;Kim, Jongpil
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.4
    • /
    • pp.525-536
    • /
    • 2014
  • In this study, a method to assess and monitor hydrological drought using remote sensing was investigated for use in regions with limited observation data, and was applied to the Upper Namhangang basin in South Korea, which was seriously affected by the 2008-2009 drought. Drought information may be obtained more easily from meteorological data based on water balance than hydrological data that are hard to estimate. Air temperature data at 2 m above ground level (AGL) were estimated using remotely sensed data, evapotranspiration was estimated from the air temperature, and the correlations between precipitation minus evapotranspiration (P-PET) and streamflow percentiles were examined. Land Surface Temperature data with $1{\times}1km$ spatial resolution as well as Atmospheric Profile data with $5{\times}5km$ spatial resolution from MODIS sensor on board Aqua satellite were used to estimate monthly maximum and minimum air temperature in South Korea. Evapotranspiration was estimated from the maximum and minimum air temperature using the Hargreaves method and the estimates were compared to existing data of the University of Montana based on Penman-Monteith method showing smaller coefficient of determination values but smaller error values. Precipitation was obtained from TRMM monthly rainfall data, and the correlations of 1-, 3-, 6-, and 12-month P-PET percentiles with streamflow percentiles were analyzed for the Upper Namhan-gang basin in South Korea. The 1-month P-PET percentile during JJA (r = 0.89, tau = 0.71) and SON (r = 0.63, tau = 0.47) in the Upper Namhan-gang basin are highly correlated with the streamflow percentile with 95% confidence level. Since the effect of precipitation in the basin is especially high, the correlation between evapotranspiration percentile and streamflow percentile is positive. These results indicate that remote sensing-based P-PET estimates can be used for the assessment and monitoring of hydrological drought. The high spatial resolution estimates can be used in the decision-making process to minimize the adverse impacts of hydrological drought and to establish differentiated measures coping with drought.

Assessing the skills of CMIP5 GCMs in reproducing spatial climatology of precipitation over the coastal area in East Asia (CMIP5 GCM의 동아시아 해안지역에 대한 공간적 강우특성 재현성 평가)

  • Hwang, Syewoon;Cho, Jeapil;Yoon, Kwang Sik
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.8
    • /
    • pp.629-642
    • /
    • 2018
  • Future variability of the spatial patterns of rainfall events is the point of water-related risks and impacts of climate change. Recent related researches are mostly conducted based on the outcomes from General Circulation Models (GCMs), especially Coupled Model Intercomparison Project, phase 5 (CMIP5) GCMs which are the most advanced version of climate modeling system. GCM data have been widely used for various studies as the data utility keep getting improved. Meanwhile the model performances especially for raw GCM outputs are rarely evaluated prior to the applications although the process would essential for reasonable use of model forecasts. This study attempt to quantitatively evaluate the skills of 29 CMIP5 GCMs in reproducing spatial climatologies of precipitation in East Asia. We used 3 different gridded observational data as the references available over the study area and calculated correlation and errors of spatial patterns simulated by GCMs. As a result, the study presented diversity of the GCM evaluation in the performance, rank, or accuracy by different configurations, such as target area, evaluation method, and observation data. Yet, we found that Hadley-centre affiliated models comparatively performs better for the meso-scale area in East Asia and MPI_ESM_MR and CMCC family showed better performance specifically for the korean peninsula. We expect that the results and thoughts of this study would be considered in screening suitable GCMs for specific area, and finally contribute to extensive utilization of the results from climate change related researches.

Agrometeorological Analysis on the Freeze Damage Occurrence of Yuzu Trees in Goheung, Jeonnam Province in 2018 (2018년 전라남도 고흥 유자나무 동해 발생에 대한 기상학적 구명)

  • Kim, Gyoung Hee;Koh, Young Jin;Kim, Kwang-Hyung
    • Research in Plant Disease
    • /
    • v.25 no.2
    • /
    • pp.71-78
    • /
    • 2019
  • In 2018, severe diebacks have occurred on yuzu trees cultivated in Goheung, Jeonnam Province. On-farm surveys at 18 randomly selected orchards revealed the dieback incidence ranged from 7.5% to 100% with an average of 43.6%, and 56.6% of the affected yuzu trees were eventually killed. In order to find the reason for this sudden epidemic, we investigated the weather conditions that are exclusively distinct from previous years, hypothesizing that certain weather extremes might have caused the dieback epidemic on yuzu trees. Since different temperatures can cause freeze damage to plants depending on their dormancy stages, we investigated both periods when yuzu becomes hardy under deep dormancy (January-February) and when yuzu loses its cold hardiness (March-April). First, we found that daily minimum air temperatures below $-10^{\circ}C$ were recorded for 7 days in Goheung for January and February in 2018, while no occasions in 2017. In particular, there were two extreme temperature drops ($-12.6^{\circ}C$ and $-11.5^{\circ}C$) beyond the yuzu cold hardiness limit in 2018. In addition, another occasion of two sudden temperature drops to nearly $0^{\circ}C$ were occurred right after abnormally-warm-temperature-rises to $13^{\circ}C$ of daily minimum air temperatures in mid-March and early April. In conclusion, we estimated that the possible damages by several extreme freeze events during the winter of 2018 could be a major cause of severe diebacks and subsequently killed the severely affected yuzu trees.

A global-scale assessment of agricultural droughts and their relation to global crop prices (전 지구 농업가뭄 발생특성 및 곡물가격과의 상관성 분석)

  • Kim, Daeha;Lee, Hyun-Ju
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.883-893
    • /
    • 2023
  • While South Korea's dependence on imported grains is very high, droughts impacts from exporting countries have been overlooked. Using the Evaporative Stress Index (ESI), this study globally analyzed frequency, extent, and long-term trends of agricultural droughts and their relation to natural oscillations and global crop prices. Results showed that global-scale correlations were found between ESI and soil moisture anomalies, and they were particularly strong in crop cultivation areas. The high correlations in crop cultivation areas imply a strong land-atmosphere coupling, which can lead to relatively large yield losses with a minor soil moisture deficits. ESI showed a clear decreasing trend in crop cultivation areas from 1991 to 2022, and this trend may continue due to global warming. The sharp increases in the grain prices in 2012 and 2022 were likely related to increased drought areas in major grain-exporting countries, and they seemed to elevate South Korea's producer price index. This study suggests the need for drought risk management for grain-exporting countries to reduce socioeconomic impacts in South Korea.

Climate Change in Corn Fields of the Coastal Region of Ecuador

  • Borja, Nicolas;Cho, Jaepil;Choi, KyungSook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.271-271
    • /
    • 2015
  • The Ecuadorian coast has two different climate regions. One is humid region where the annual rainfall is above 2000 mm and rain falls in almost all months of the year, and the other is dry region where the annual rainfall can fall below 50 mm and rainfall can be very seasonal. The agriculture is frequently limited by the seasons during the year and the availability of rainfall amounts. The corn fields in Ecuador are cultivated during the rainy season, due to this reason. The weather conditions for optimum development of corn growth require a monthly average rainfall of 120 mm to 140 mm and a temperature range of $22^{\circ}C{\sim}32^{\circ}C$ for the dry region, and a monthly average rainfall of 200 mm to 400 mm and a temperature range of $25^{\circ}C{\sim}30^{\circ}C$ for the humid area. The objective of this study is to predict how the weather conditions are going to change in corn fields of the coastal region of Ecuador in the future decades. For this purpose, this study selected six General Circulation Models (GCM) including BCC-CSM1-1, IPSL-CM5A-MR, MIROC5, MIROC-ESM, MIROC-ESM-CHEM, MRIC-CGC3 with different climate scenarios of the RCP 4.5, RCP 6.0, and RCP 8.5, and applied for the period from 2011 to 2100. The climate variables information was obtained from the INAMHI (National Institute of Meteorology and Hydrology) in Ecuador for the a base line period from 1986 to 2012. The results indicates that two regions would experience significant changes in rainfall and temperature compared to the historical data. In the case of temperature, an increment of $1^{\circ}C{\sim}1.2^{\circ}C$ in 2025s, $1.6^{\circ}C{\sim}2.2^{\circ}C$ in 2055s, $2.1^{\circ}C{\sim}3.5^{\circ}C$ in 2085s were obtained from the dry region while less increment were shown from the humid region with having an increment of $1^{\circ}C$ in 2025s, $1.4^{\circ}C{\sim}1.8^{\circ}C$ in 2055s, $1.9^{\circ}C{\sim}3.2^{\circ}C$ in 2085s. Significant changes in rainfall are also projected. The rainfall projections showed an increment of 8%~11% in 2025s, 21%~33% in 2055s, and 34%~70% in 2085s for the dry region, and an increment of 2%~10%, 14%~30% and 23%~57% in 2025s, 2055s and 2085s decade respectively for humid region.

  • PDF